×

Quantum group structure in the Fock space resolutions of ŝl(n) representations. (English) Zbl 0704.17009

The authors are looking for a two-sided resolution of an irreducible highest weight module for the affine Kac-Moody algebra \(\hat sl(n)\) in terms of Fock space modules analogous to the Bernstein-Gel’fand-Gel’fand resolution by Verma modules. A Fock space realization of \(\hat sl(n)\) is given generalizing M. Wakimoto’s realization of \(\hat sl(2)\) [Commun. Math. Phys. 104, 605-609 (1986; Zbl 0587.17009)]. Intertwining operators on Fock space modules are built as appropriate contour integrals over products of “screening operators”. Within the contour integrals the algebra of screening operators satisfies the quantum group identities of \({\mathcal U}_ q({\mathfrak n}_+)\). There is a map from the singular vectors in a “quantum Verma module” to intertwining operators. In case \(n=3\) the intertwiners between Fock space modules are used to construct a complex of \(\hat sl(3)\) Fock space modules. A lack of necessary understanding of quantum Verma modules prevents the construction of the complex in the general case.
There are several conjectures: First, that the construction generalizes to get a complex for arbitrary n. Second, that the constructed complex is in fact a resolution, that the cohomology is concentrated in zero dimension equal to the irreducible highest weight module. It is stated in a footnote, that the last conjecture was answered by B. L. Feigin and F. V. Frenkel in the affirmative (Moscow Preprint 1989) using geometrical methods and restricting the considerations to the case of integrable highest weight modules.
The physical background is two-dimensional conformal field theory in a free field realization.
Reviewer: H.Boseck

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)

Citations:

Zbl 0587.17009
Full Text: DOI

References:

[1] [AGS] Alvarez-Gaumé, L., Gomez, C., Sierra, G.: Quantum group interpretation of some conformal field theories. Phys. Lett.220B, 142–152 (1989) · Zbl 0689.17009
[2] [BaGo] Bagger, J., Goulian, M.: Coulomb-gas representation on higher-genus surfaces. Nucl. Phys.B330, 488–508 (1990) · Zbl 1210.81093 · doi:10.1016/0550-3213(90)90120-3
[3] [BaRa] Barut, A. O., Raczka, R.: Theory of group representations and applications. Warszawa: Polish Scientific 1980
[4] [BBSS1] Bais, F. A., Bouwknegt, P., Schoutens, K. Surridge, M.: Extensions of the Virasoro algebra constructed from Kač-Moody algebras using higher order Casimir invariants. Nucl. Phys.B304, 348–370 (1988) · Zbl 0675.17009 · doi:10.1016/0550-3213(88)90631-1
[5] [BBSS2] Bais, F. A., Bouwknegt, P., Schoutens, K., Surridge, M.: Coset construction for extended Virasoro algebras. Nucl. Phys.B304, 371–391 (1988) · Zbl 0675.17010 · doi:10.1016/0550-3213(88)90632-3
[6] [BeOo] Bershadsky, M., Ooguri, H.: HiddenSL(n) symmetry in conformal field theory. Commun. Math. Phys.126, 49–84 (1989) · Zbl 0689.17015 · doi:10.1007/BF02124331
[7] [BF] Bernard, D., Felder, G.: Fock representations and BRST cohomology inSL(2) current algebra. Commun. Math. Phys.127, 145–168 (1990) · Zbl 0703.17013 · doi:10.1007/BF02096498
[8] [BGG1] Bernstein, I. N., Gel’fand, I. M., Gel’fand, S. I.: Structure of representations generated by vectors of highest weight. Funct. An. Appl.5, 1–8 (1971) · Zbl 0246.17008 · doi:10.1007/BF01075841
[9] [BGG2] Bernstein, I. N., Gel’fand, I. M., Gel’fand, S. I.: Differential operators on the base affine space and a study ofg-modules. Summer school of the Bolyai János Math. Soc., ed. Gel’fand, I. M., pp. 21–64, New York 1975
[10] [Bi1] Bilal, A.: Bosonization ofZ N parafermions andSU(2) N Kač-Moody algebra. Phys. Lett.226B, 272–278 (1989)
[11] [Bi2] Bilal, A.: Fusion and braiding in extended conformal theories. CERN-TH.5403/89
[12] [Bi3] Bilal, A.: Fusion and braiding inW-algebra extended conformal theories (II); Generalization to chiral screened vertex operators labelled by arbitrary Young tableaux. CERN-TH.5493/89
[13] [BMP1] Bouwknegt, P., McCarthy, J., Pilch, K.: Free field realizations of WZNW-models; BRST complex and its quantum group structure. Phys. Lett.234B, 297–303 (1990)
[14] [BMP2] Bouwknegt, P., McCarthy, J., Pilch, K.: unpublished
[15] [Bo] Bott, R.: Homogeneous vector bundles. Ann. Math.66, 203–248 (1957) · Zbl 0094.35701 · doi:10.2307/1969996
[16] [BPZ] Belavin, A. A., Polyakov, A. M., Zamolodchikov, A. B.: Infinite conformal symmetry in two dimensional quantum field theory. Nucl. Phys.B241, 333–380 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[17] [DF1] Dotsenko, VI.S., Fateev, V. A.: Conformal algebra and multipoint correlation functions in 2D statistical models. Nucl. Phys.B240 [FS12], 312–348 (1984) · doi:10.1016/0550-3213(84)90269-4
[18] [DF2] Dotsenko, Vl. S., Fateev, V. A.: Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central chargec<1. Nucl. Phys.B251 [FS13], 691–734 (1985) · doi:10.1016/S0550-3213(85)80004-3
[19] [DM] Deligne, P., Mostow, G. D.: Monodromy of hypergeometric functions and non-lattice integral monodromy. Publ. Math. IHES63, 5–89 (1986) · Zbl 0615.22008
[20] [Dr1] Drinfel’d, V. G.: Hopf algebras and the quantum Yang-Baxter equation. Soc. Math. Dokl.32, 254–258 (1985)
[21] [Dr2] Drinfel’d, V. G.: Quantum groups. In: Proc. of the International Congress of Math., Berkeley, 1986
[22] [DQ] Distler, J., Quiu, Z. BRS cohomology and a Feigin-Fuchs representation of Kač-Moody and parafermionic theories. Cornell preprint CLNS 89/911
[23] [Fe] Felder, G.: BRST approach to minimal models. Nucl. Phys.B317, 215–236 (1989); erratum. Nucl. Phys.B324, 548 (1989) · doi:10.1016/0550-3213(89)90568-3
[24] [FeFr1] Feigin, B. L., Frenkel, E. V.: The family of representations of affine Lie algebras. Usp. Mat. Nauk.43, 227–228 (1988); (Russ. Math. Surv.)43, 221–222 (1989) · Zbl 0657.17013
[25] [FeFr2] Feigin, B. L., Frenkel, E. V.: Representations of affine Kač-Moody algebras and bosonization. Moscow preprint, March ’89, to appear in the V. Knizhnik memorial volume
[26] [FeFr3] Feigin, B. L., Frenkel, E. V.: Representations of affine Kac-Moody algebras, bosonization and resolutions. Moscow preprint, April 1989
[27] [FeFr4] Feigin, B. L., Frenkel, E. V.: Affine Kac-Moody algebras and semi-infinite flag manifolds, Moscow preprint, May 1989, to appear in Commun. Math. Phys.
[28] [FeFu] Feigin, B. L., Fuchs, D. B.: Representations of the Virasoro algebra. Seminar on supermanifolds no. 5, Leites, D. (ed.)
[29] [FFK] Felder, G., Fröhlich, J., Keller, G.: Braid matrices and structure constants for minimal models. Commun. Math. Phys.124, 647–664 (1989) · Zbl 0696.17009 · doi:10.1007/BF01218454
[30] [FL1] Fateev, V. A., Lukyanov, S. L.: The models of two-dimensional conformal quantum field theory withZ n symmetry. Int. J. Mod. Phys.3, 507–520 (1988) · doi:10.1142/S0217751X88000205
[31] [FL2] Fateev, V. A., Lukyanov, S. L.: Additional symmetries and exactly soluble models in two-dimensional field theory, I, II and III, Moscow preprints
[32] [FLMS1] Frau, M., Lerda, A., McCarthy, J., Sciuto, S.: Minimal models on Riemann surfaces. Phys. Lett.228B, 205–213 (1989)
[33] [FLMS2] Frau, M., Lerda, A., McCarthy, J., Sciuto, S.: Operator formalism and free field representation for minimal models on Riemann surfaces. MIT preprint #1803. Nucl. Phys.B (to appear)
[34] [FMS] Friedan, D., Martinec, E., Shenker, S.: Conformal invariance, supersymmetry and string theory. Nucl. Phys.B271, 93–165 (1986)
[35] [FS1] Felder, G., Silvotti, R.: Modular covariance of minimal model correlation functions. Commun. Math. Phys.123, 1–15 (1989) · Zbl 0693.30037 · doi:10.1007/BF01244015
[36] [FS2] Felder, G., Silvotti, R.: Free field representation of minimal models on a Riemann surface. Phys. Lett.231B, 411–416 (1989)
[37] [FZ1] Fateev, V. A., Zamolodchikov, A. B.: Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in Z N -symmetric statistical systems. Sov. Phys. JETP62, 380–399 (1985)
[38] [FZ2] Fateev, V. A.: Zamolodchikov, A. B.: Conformal quantum field theory models in two dimensions having Z3 symmetry. Nucl. Phys.B280 [FS18], 644–660 (1987) · doi:10.1016/0550-3213(87)90166-0
[39] [Ge] Gepner, D.: New conformal field theories associated with Lie algebras and their partition functions. Nucl. Phys.B290 [FS20], 10–24 (1987) · doi:10.1016/0550-3213(87)90176-3
[40] [GeWi] Gepner, D., Witten, E.: String theory on group manifolds. Nucl. Phys.B278, 493–549 (1986) · doi:10.1016/0550-3213(86)90051-9
[41] [Gi] Ginsparg, P.: Applied conformal field theory. HUTP-88/A054
[42] [GL] Garland, H., Lepowsky, J.: Lie algebra homology and the Macdonald-Kac formula. Inv. Math.34, 37–76 (1976) · Zbl 0358.17015 · doi:10.1007/BF01418970
[43] [GMM] Gerasimov, A., Marshakov, A., Morozow, A.: Free field representation of parafermions and related coset models. Nucl. Phys.B328, 664–676 (1989) · doi:10.1016/0550-3213(89)90224-1
[44] [GMMOS] Gerasimov, A., Marshakov, A., Morozow, A., Olshanetsky, M., Shatashvili, S.: Wess-Zumino-Witten models as a theory of free fields. Moscow ITEP preprint, March ’89
[45] [It] Ito, K.:N=2 super coulomb gas formalism. UT-Komaba 89-13
[46] [ItKa] Ito, K., Kazama, Y.: Feigin-Fuchs representation ofA n (1) affine Lie algebra and the associated parafermionic algebra. UT-Komaba 89-22
[47] [Ja] Jantzen, J. C.: Moduln mit einem höchsten Gewicht. Lecture Notes in Mathematics, Vol.750. Berlin, Heidelberg, New York: Springer 1979 · Zbl 0426.17001
[48] [Ji] Jimbo, M.: Aq-difference analogue ofU(g) and the Yang-Baxter equation. Lett. Math. Phys.10, 63–69 (1985) · Zbl 0587.17004 · doi:10.1007/BF00704588
[49] [Ka] Kac, V. G.: Infinite dimensional Lie algebas. Cambridge, Cambridge University Press 1985
[50] [KaKa] Kac, V. G., Kazhdan, D. A.: Structure of representations with highest weight of infinite dimensional Lie algebras. Adv. Math.34, 97–108 (1979) · Zbl 0427.17011 · doi:10.1016/0001-8708(79)90066-5
[51] [Ke] Kempf, G.: Cousin-Grothendieck complex of induced representations. Adv. Math.29, 310–396 (1978) · Zbl 0393.20027 · doi:10.1016/0001-8708(78)90021-X
[52] [KV] Kashiwara, M., Vergne, M.: Remarque sur la covariance de certains operateurs differentiels. Lecture Notes in Mathematics Vol.587, pp. 119–137. Berlin, Heidelberg, New York: Springer 1976
[53] [Kol] Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. Math.74, 329–387 (1961) · Zbl 0134.03501 · doi:10.2307/1970237
[54] [Ko2] Kostant, B.: Verma modules and the existence of quasi-invariant differential operators. In: Non-commutative harmonic analysis. Lecture Notes in Mathematics, Vol.466, 101–128. Berlin, Heidelberg, New York: Springer 1974
[55] [Lu1] Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. Math.70, 237–249 (1988) · Zbl 0651.17007 · doi:10.1016/0001-8708(88)90056-4
[56] [Lu2] Lusztig, G.: Modular representations and quantum groups. Contemp. Math.82, 59–77 (1989)
[57] [Lu3] Lusztig, G.: Finite dimensional Hopf algebra arising from quantum groups. MIT preprint
[58] [MR] Moore, G., Reshetikhin, N.: A comment on quantum group symmetry in conformal field theory. Nucl. Phys.B328, 557–574 (1989) · doi:10.1016/0550-3213(89)90219-8
[59] [MS] Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys.123, 177–254 (1989) · Zbl 0694.53074 · doi:10.1007/BF01238857
[60] [Ne1] Nemeschansky, D.: Feigin-Fuchs representation of \(\widehat{su}(2)_k\) Kac-Moody algebra. Phys. Lett.224B, 121–124 (1989)
[61] [Ne2] Nemeschansky, D.: Feigin-Fuchs representation of string functions. Preprint USC-89-012
[62] [No] Novikov, S. P.: The Hamiltonian formalism and a many-valued analogue of Morse theory. Usp. Mat. Nauk.37, 3–49 (1982); (Russ. Math. Surv.37, 1–56 (1982) · Zbl 0571.58011
[63] [Pe] Perelomov, A. M.: Generalized coherent states and their applications. Berlin, Heidelberg, New York: Springer 1986 · Zbl 0605.22013
[64] [RCW] Rocha-Caridi, A., Wallach, N. R.: Projective modules over graded Lie algebras I. Math. Z.180, 151–177 (1982) · doi:10.1007/BF01318901
[65] [Ro] Rosso, M.: Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra. Commun. Math. Phys.117, 581–593 (1988) · Zbl 0651.17008 · doi:10.1007/BF01218386
[66] [Sm] Smit, D.-J.: Quantum groups and algebraic geometry in conformal field theory. PhD-thesis, University of Utrecht, 1989
[67] [TK1] Tsuchiya, A., Kanie, Y.: Fock space representations of the Virasoro algebra-Intertwining operators-, Publ. RIMS, Kyoto Univ.22, 259–327 (1986) · Zbl 0604.17008 · doi:10.2977/prims/1195178069
[68] [TK2] Tsuchiya, A., Kanie, Y.: Vertex operators in conformal field theory onP 1 and monodromy representations of braid group. Adv. Stud. Pure Math.16, 297–372 (1988)
[69] [Ve] Verma, D. N.: Structure of certain induced representations of complex semi simple Lie algebras. Bull. Am. Math. Soc.74, 160–166 (1968) · Zbl 0157.07604 · doi:10.1090/S0002-9904-1968-11921-4
[70] [Wa] Wakimoto, M.: Fock representations of the affine Lie algebraA 1 (1) . Commun. Math. Phys.104, 605–609 (1986) · Zbl 0587.17009 · doi:10.1007/BF01211068
[71] [Wi1] Witten, E.: Non-abelian bosonization in two dimensions. Commun. Math. Phys.92, 455–472 (1984) · Zbl 0536.58012 · doi:10.1007/BF01215276
[72] [Wi2] Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys.121, 351–399 (1989) · Zbl 0667.57005 · doi:10.1007/BF01217730
[73] [WZ] Wess, J., Zumino, B.: Consequences of anomalous Ward identities. Phys. Lett.37B, 95–98 (1971)
[74] [Za1] Zamolodchikov, A. B.: Infinite additional symmetries in two dimensional conformal quantum field theory. Theor. Math. Phys.65, 1205–1213 (1986) · doi:10.1007/BF01036128
[75] [Za2] Zamolodchikov, A. B.: Montreal lectures, unpublished
[76] [Ze] Zhelobenko, D. B.: Compact Lie groups and their representations. Providence, RI: American Mathematical Society 1973
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.