×

Some theorems on metric uniform distribution using \(L^ 2\) methods. (English) Zbl 0704.11020

The author studies the distribution in \([0,1[^ d\) of sequences of the type \((1)\quad (a_{1,j}x_ 1,...,a_{d,j}x_ d)_{j\geq 1} mod 1\) with \((a_{i,j})_{j\geq 1}\) a strictly increasing sequence of integers and \(x_ i\in {\mathbb{R}}\), \(1\leq i\leq d\), and, more general, \((2)\quad ((g_{i,j}(x_ 1),...,g_{d,j}(x_ d))_{j\geq 1}mod 1\) with \(g_{i,j}\) real valued and differentiable. For sequences of the type (1) he generalizes a metric result of R. C. Baker [J. Lond. Math. Soc., II. Ser. 24, 34-40 (1981; Zbl 0422.10048)]. In the proof, a maximal inequality for partial sums of Fourier series in several variables established by P. Sjölin [Ark. Math. 9, 65-90 (1971; Zbl 0212.417)] is applied to show:
Theorem 1. \(D(N,x)=o(N^{-1/2}(\log N)^{1/2+d+\epsilon})\) a.e., where D(N,x) denotes the (usual) discrepancy of the first N points of the sequence (1) in \([0,1[^ d\) and \(x=(x_ 1,...,x_ d)\). Further, it is proved Theorem 2. If \(B=\cup^{\infty}_{k=1}R_ k\), \((R_ k)_{k\geq 1}\) a sequence of disjoint boxes \(R_ k\) in \([0,1[^ d\) where the volume of \(R_ k\) decreases exponentially in k, then for the discrepancy function the estimate \[ | (1/N)\sum_{j\leq N}1_ B((a_{1,j}X_ 1,...,a_{d,j}x_ d))-volume(B)| \quad <\quad N^{1/2}(\log N)^{d+3/2+\epsilon} \] holds. Again, this generalizes (and, here, even improves) a result of R. C.Baker [Mathematika 21, 248-260 (1975; Zbl 0296.10037)]. The paper is completed by further metric results on the distribution of the sequence of type (2), for example an estimate of the Hausdorff dimension of the set \(\{\) \(x\in X :\limsup_{N\to \infty} N^ q D(N,x)>0\}\), \(0<q<1/2\).
Reviewer: P.Hellekalek

MSC:

11K38 Irregularities of distribution, discrepancy
11K06 General theory of distribution modulo \(1\)
Full Text: DOI

References:

[1] Baker, R. C., Metric number theory and the large sieve, J. London Math. Soc. (2), 24, 34-40 (1981) · Zbl 0422.10048
[2] Baker, R. C., Khinchin’s conjecture and Marstrand’s theorem, Mathematika, 21, 145-160 (1974) · Zbl 0296.10037
[3] Cassels, J. W.S., Some metrical theorems in diophantine approximation III, (Proc. Cambridge Philos. Soc., 46 (1950)), 219-225 · Zbl 0035.31902
[4] Erdős, P.; Koksma, J. F., On uniform distribution mod 1 of sequences {\(f(n, θ)\)}, Indag. Math., 11, 299-302 (1949)
[5] Erdős, P.; Taylor, S. J., On the set of points of convergence of lacunary trigonometrical series and the equidistribution properties of related sequences, (Proc. London Math. Soc. (3), 7 (1957)), 598-615 · Zbl 0111.26801
[6] Erdős, P.; Turan, P., On a problem in the theory of uniform distribution I, Indag. Math., 10, 370-378 (1948)
[7] Erdős, P.; Turan, P., On a problem in the theory of uniform distribution II, Indag. Math., 10, 406-413 (1948)
[8] Falconer, K. J., (The Geometry of Fractal Sets (1985), Cambridge Univ. Press: Cambridge Univ. Press London/New York) · Zbl 0587.28004
[9] Gàl, I. S.; Koksma, J. F., Sur l’ordre de grandeur des functions sommable, (Proc. K. Ned. Akad. Wet., 53 (1950)), 638-653 · Zbl 0041.02406
[10] Gallagher, P. X., The large sieve, Mathematika, 14, 14-20 (1967) · Zbl 0163.04401
[11] Garcia, A., Existence of almost everywhere convergent rearrangements for Fourier series of \(L_2\) functions, Ann. of Math., 79, 623-629 (1964) · Zbl 0133.02702
[12] O. J. Jørsbo and L. Mejlbro; O. J. Jørsbo and L. Mejlbro
[13] Koksma, J. F., Some theorems on diophantine inequalities, Math. Centrum Amsterdam (1950), Scriptum No. 5 · Zbl 0038.02803
[14] Kuipers, L.; Neiderreiter, H., (Uniform Distribution of Sequences (1974), Wiley: Wiley New York) · Zbl 0281.10001
[15] LeVeque, W. J., The distribution modulo one of trigonometric series, Duke. J. Math., 20, 367-374 (1953) · Zbl 0051.28504
[16] Montgomery, H. L., The analytic principle of the large sieve, Bull. Amer. Math. Soc., 84, 547-567 (1978) · Zbl 0408.10033
[17] \( \textsc{R. Nair}a_ja_{j\)
[18] Philipp, W., Limit theorems for lacunary series and uniform distribution mod 1, Acta. Arith., 26, 241-251 (1975) · Zbl 0263.10020
[19] Rogers, C. A., (Hausdorff Measures (1970), Cambridge Univ. Press: Cambridge Univ. Press London/New York) · Zbl 0204.37601
[20] Salem, R., Uniform distribution and capacity of sets, Comm. Sem. Math. Univ. Lund Suppl., 193-195 (1952) · Zbl 0047.28301
[21] Sjölin, P., Convergence almost everywhere of certain singular integrals and multiple Fourier series, Ark. Math., 9, 65-90 (1971) · Zbl 0212.41703
[22] Spatzier, F., A combinatorial lemma ánd its applications in probability theory, Trans. Amer. Math. Soc., 82, 323-339 (1956) · Zbl 0071.13003
[23] Weyl, H., Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann., 77, 313-352 (1916) · JFM 46.0278.06
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.