×

Solving nonlinear systems of equations with only one nonlinear variable. (English) Zbl 0703.65029

A method for solving systems of \(N+1\) equations in \(N+1\) unknowns \(y\in R\) and \(z\in R^ N\) of the form \(A(y)z+b(y)=0,\) where the \((N+1)\times N\) matrix A(y) and the vector b(y) are functions of y alone is presented. The problem is reduced to one equation in y only which is solved by Newton’s method. Numerical experiments and two generalizations are discussed.
Reviewer: V.A.Kostova

MSC:

65H10 Numerical computation of solutions to systems of equations
Full Text: DOI

References:

[1] Allgower, E.; Georg, K., Simplicial and continuation methods for approximating fixed points, SIAM Rev., 22, 28-85 (1980) · Zbl 0432.65027
[2] Barrodale, I.; Roberts, F.; Hunt, C., Computing best \(l_p\) approximations by functions nonlinear in one parameter, Computer J., 13, 382-386 (1970) · Zbl 0235.65012
[3] Dennis, J. E.; Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1983), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0579.65058
[4] Dunham, C. B., Convergence of the Fraser-Hart algorithm for rational Chebyshev approximation, Math. Comp., 29, 1078-1082 (1974) · Zbl 0309.41024
[5] Dunham, C. B., Rationals with repeated poles, (Mason, J.; Cox, M. G., Algorithms for Approximation (1987), Oxford Univ. Press: Oxford Univ. Press Oxford), 285-291 · Zbl 0617.41039
[6] Dunham, C. B., Approximation with one (or few) parameters nonlinear, J. Comput. Appl. Math., 21, 1, 115-118 (1988) · Zbl 0638.65013
[7] Dunham, C. B.; Zhu, C. Z., Solving equations nonlinear in only one of \(N + 1\) variables, ACM SIGNUM Newsletter, 23, 3 & 4, 2-3 (1988)
[8] Fisher, P. G.; Hughes Hallett, A. J., Iterative techniques for solving simultaneous equation systems: a view from the economics literature, J. Comput. Appl. Math., 24, 1 & 2, 241-255 (1988) · Zbl 0663.65028
[9] Fraser, W.; Hart, J., On the computation of rational approximations to continuous functions, Comm. ACM, 5, 401-402 (1962) · Zbl 0107.33801
[10] Golub, G.; Van Loan, C., Matrix Computations (1983), North Oxford Academic: North Oxford Academic Oxford · Zbl 0559.65011
[11] Griewank, A., On automatic differentiation (1988), Argonne National Laboratory, Preprint MCS-P10-1088
[12] Menzel, R.; Schwetlick, H., Zur Lösung parameterabhängiger nichtlinearer Gleichungen mit singulären Jacobi-Matrizen, Numer. Math., 30, 65-79 (1978) · Zbl 0425.65032
[13] Ralston, A., Rational Chebyshev approximation, (Ralston, A.; Wilf, H., Mathematical Methods for Digital Computers II (1967), Wiley: Wiley New York), 264-284 · Zbl 0183.18601
[14] Watson, L. T., Numerical linear algebra aspects of globally convergent homotopy methods, SIAM Rev., 28, 529-546 (1986) · Zbl 0608.65028
[15] Ypma, T. J., Finding a multiple zero by transformations and Newton-like methods, SIAM Rev., 25, 365-378 (1983) · Zbl 0533.65026
[16] T.J. Ypma and Y.-Q. Shen, Solving \(Nmm\); T.J. Ypma and Y.-Q. Shen, Solving \(Nmm\) · Zbl 0721.65024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.