×

Radial entire solutions of a class of quasilinear elliptic equations. (English) Zbl 0703.35060

Le problème étudié ici est celui de l’existence et du comportement de solutions radiales d’équations aux dérivées partielles du type suivant: \[ \nabla [g(| \nabla u|)\nabla u]=\lambda f(| x|,u)\quad dans\quad {\mathbb{R}}^ n,\quad n\geq 2. \] Sous différentes conditions portant sur les fonctions g et f, les auteurs démontrent des résultats d’existence de solutions radiales positives, ayant un certain comportement à l’infini (décroissance pour \(n\geq 3\), croissance logarithmique pour \(n=2).\)
Pour l’étude, ils ramènent (dans le cas radial) l’équation à une équation intégrale, dont ils déduisent aussi bien l’existence de solution que des estimations.
Reviewer: M.Derridj

MSC:

35J60 Nonlinear elliptic equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35J70 Degenerate elliptic equations
Full Text: DOI

References:

[1] Atkinson, F. V.; Peletier, L. A.; Serrin, J., Ground states for the prescribed mean curvature equation: The supercritical case, (Mathematical Sciences Research Institute Publications, Vol. 12 (1988), Springer-Verlag: Springer-Verlag New York/Berlin/Heidelberg/London/Paris/Tokyo), 51-74 · Zbl 0665.35030
[2] Bidaut-Veron, M.-F, Global existence and uniqueness results for singular solutions of the capillarity equation, Pacific J. Math., 125, 317-335 (1986) · Zbl 0606.34031
[3] Concus, P.; Finn, R., A singular solution of the capillarity equation, I: Existence, Invent. Math., 29, 143-148 (1975) · Zbl 0319.76007
[4] Concus, P.; Finn, R., A singular solution of the capillarity equation, II: Uniqueness, Invent. Math., 29, 149-160 (1975) · Zbl 0319.76008
[5] Franchi, B.; Lanconelli, E.; Serrin, J., Esistenza e unicità degli stati fondamentali per equazioni ellittiche quasilineari, Rend. Accad. Naz. Lincei, 79, 121-126 (1985) · Zbl 0647.35025
[6] Franchi, B.; Lanconelli, E.; Serrin, J., Existence and uniqueness of ground state solutions of quasilinear elliptic equations, (Mathematical Sciences Research Institute Publications, Vol. 12 (1988), Springer-Verlag: Springer-Verlag New York/Berlin/Heidelberg/London/Paris/Tokyo), 293-300 · Zbl 0665.35022
[7] Kawano, N., On bounded positive solutions of quasilinear elliptic equations in \(R^n\), (Proc. Japan Acad., 64 (1988)), 187-190 · Zbl 0699.35085
[8] Kusano, T.; Naito, M.; Swanson, C. A., Radial entire solutions to even order semilinear elliptic equations in the plane, (Proc. Roy. Soc. Edinburgh Sect. A, 105 (1987)), 275-287 · Zbl 0647.35030
[9] Kusano, T.; Naito, M.; Swanson, C. A., Radial entire solutions of even order semilinear elliptic equations, Canad. J. Math., 40, 1281-1300 (1988) · Zbl 0666.35029
[10] Ni, W.-M; Serrin, J., Non-existence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo (2), Suppl., 8, 171-185 (1985) · Zbl 0625.35028
[11] Ni, W.-M; Serrin, J., Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case, Atti Convegni Lincei, 77, 231-257 (1986)
[12] Ni, W.-M; Serrin, J., Nonexistence theorems for singular solutions of quasilinear partial differential equations, Comm. Pure Appl. Math., 39, 379-399 (1986) · Zbl 0602.35031
[13] Peletier, L. A.; Serrin, J., Ground states for the prescribed mean curvature equation, (Proc. Amer. Math. Soc., 100 (1987)), 694-700 · Zbl 0632.35004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.