×

Numerical solution of the nonlinear heat equation in heterogeneous media. (English) Zbl 0702.65094

The nonlinear multi-dimensional heat transfer problem in discontinuously heterogeneous, but piecewise homogeneous media is treated numerically by using the enthalpy formulation, certain regularization of the contact conditions between the homogeneous subdomains, the fully implicit time discretization and linear finite elements in space with linear interpolation and numerical integration.
The convergence is proved by using a technique that does not check the time derivative of temperature. Phase transitions with a positive latent heat (i.e. Stefan problems) are covered, as well. Besides, the problem needs not be of a strongly parabolic type. Some numerical experience with the nonlinear Gauss-Seidel algorithm to solve the created nonlinear algebraic systems is presented, too.
Reviewer: T.Roubíček

MSC:

65Z05 Applications to the sciences
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
80A22 Stefan problems, phase changes, etc.
35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
35R35 Free boundary problems for PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] DOI: 10.1007/BF02248021 · Zbl 0199.50603 · doi:10.1007/BF02248021
[2] DOI: 10.1093/imanum/7.3.283 · Zbl 0629.65118 · doi:10.1093/imanum/7.3.283
[3] Ciarlet P., The Finite Element Method for Elliptic Problems (1978) · Zbl 0383.65058
[4] DOI: 10.1137/0712037 · Zbl 0272.65101 · doi:10.1137/0712037
[5] DOI: 10.1093/imanum/7.1.61 · Zbl 0638.65088 · doi:10.1093/imanum/7.1.61
[6] DOI: 10.1137/0710047 · Zbl 0256.65054 · doi:10.1137/0710047
[7] DOI: 10.1007/BFb0004966 · doi:10.1007/BFb0004966
[8] DOI: 10.1007/BF01460125 · Zbl 0519.35079 · doi:10.1007/BF01460125
[9] Niezgódka M., Numerical Treatment of Free Boundary Value Problems 58 (1982)
[10] DOI: 10.1007/BF02575898 · Zbl 0606.65084 · doi:10.1007/BF02575898
[11] DOI: 10.1137/0725046 · Zbl 0655.65131 · doi:10.1137/0725046
[12] DOI: 10.1090/S0025-5718-1982-0669635-2 · doi:10.1090/S0025-5718-1982-0669635-2
[13] Ortega J. M., Iterative Solutions of Nolinear Equations in Several Varibles (1970)
[14] Pawlow, I. 1985. ”Approximation of variational inequality arising from a class of degenerate multi-phase Stefan problem”. Vol. 74, Mathematisches Institut, Universität Augsburg. Preprint
[15] DOI: 10.1007/BF01398381 · Zbl 0589.65056 · doi:10.1007/BF01398381
[16] Roubíček T., Ann. Inst. H. Poincaré, Analyse Nonlinéaire 6 pp 481– (1989)
[17] Roubíček T., Časopis Pěst. Matematiky 115 (1990)
[18] Visintin A., Boll. U.M.I. 18 pp 63– (1981)
[19] Visintin A., Free Boudary Problems, Theory and Applications 79 (1983)
[20] Zlámal M., RAIRO Anal. Numer. 14 pp 203– (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.