×

On false branch points of incompressible branched immersions. (English) Zbl 0701.53009

Branched minimal immersions appear naturally as solutions of Plateau’s problem. A basic question is to decide when such an immersion is in fact unbranched. If the minimal surface is area minimizing in a three- manifold, we have a satisfactory answer from the results of Osserman, Alt and Gulliver. In this paper the authors obtain a regularity result under assumptions related to incompressibility of the surface. More precisely, given a branched minimal immersion f from a Riemann surface with boundary M into a Riemannian manifold N, if f induces an isomorphism between the fundamental groups of M and N, and is one-to-one on the boundary of M, then f has no ramified points.
Reviewer: A.Ros-Mulero

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature

References:

[1] Alt, H. W.: Verzweigungspunkte vonH-Flächen, I. Math Z.127, 333-362 (1972); II. Math. Ann.201, 33-56 (1973) · Zbl 0253.58007 · doi:10.1007/BF01111392
[2] Elwin, J. and Short D.: Branched immersions onto compact orientable surfaces. Pac. J. Math.54, 113-122 (1974) · Zbl 0265.57004
[3] Elwin, J. and Short D.: Branched immersions between 2-manifolds of higher topological type. Pac. J. Math.58, 361-370 (1975) · Zbl 0308.57005
[4] Gulliver, R.: Regularity of minimizing surfaces of prescribed mean curvature. Annals of Math.97, 275-305 (1973) · Zbl 0246.53053 · doi:10.2307/1970848
[5] Gulliver, R.: Branched immersions of surfaces and reduction of topological type, I. Math. Z.145, 267-288 (1975) · doi:10.1007/BF01215292
[6] Gulliver, R.: Finiteness of the ramified set for branched immersions of surfaces. Pac. J. Math.64, 153-165 (1976) · Zbl 0336.55002
[7] Gulliver, R.: Branches immersions of surfaces and reduction of topological type, II. Math. Ann.230, 25-48 (1977) · doi:10.1007/BF01420574
[8] Gulliver, R., Osserman, R., Royden, H. L.: A theorey of branched immersions of surfaces. Amer. J. Math.95, 750-812 (1973) · Zbl 0295.53002 · doi:10.2307/2373697
[9] Jost, J.: Conformal mappings and the Plateau-Douglas problem. J. reine angew. Math.359, 37-54 (1985) · Zbl 0568.49025 · doi:10.1515/crll.1985.359.37
[10] Lemaire, L.: Boundary value problems for harmonic and minimal maps of surfaces into manifolds. Ann. Scuola Norm. Sup. Pisa, IV, Vol. IX, 91-103 (1982) · Zbl 0532.58004
[11] Massey, W.: Algebraic topology: an introduction. Harcourt, Brace & World, Inc., 1967 · Zbl 0153.24901
[12] Milnor, J.: Topology from the differentiable viewpoint. The University press of Virginia, Charlottesville 1965 · Zbl 0136.20402
[13] Osserman, R.: A proof of the regularity everywhere of the classical solution to Plateau’s problem. Annals of Math.91, 550-569 (1970) · Zbl 0194.22302 · doi:10.2307/1970637
[14] Schoen, R., Yau, S. T.: Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature. Ann. Math. 110 (1979), 127-142 · Zbl 0431.53051 · doi:10.2307/1971247
[15] Stoïlow, S.: Leçons sur les principes topologiques de la théorie des fonctions analytiques. Gauthier-Villars, Paris 1938 · JFM 64.0309.01
[16] Tomi, T., Tromba, A. J.: Existence theorems for minimal surfaces of nonzero genus spanning a contour. Memoirs Amer. Math. Soc., Vol.71, Nr. 382 (1988) · Zbl 0638.58004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.