×

A lifting theorem for the time regularity of solutions to abstract equations with unbounded operators and applications to hyperbolic equations. (English) Zbl 0699.47034

Summary: We consider the solution operator \[ (Lu)(t)=A\int^{t}_{0}G(t- \tau)A^{-1}Bu(\tau)d\tau \] corresponding to the abstract equation \(\dot x=Ax+Bu\) on a reflexive Banach space X, where the linear operator \(A: X\supset {\mathcal D}(A)\to X\) is the infinitesimal generator of a (strongly continuous) group G(t) of bounded operators on X, and \(B: U\supset {\mathcal D}(B)\to X\) is a generally unbounded linear operator with \(A^{-1}B\in {\mathcal L}(U,X)\), U being another reflexive Banach space (without loss of generality we take A to be boundedly invertible). Let \(0<T<\infty\) be given.
We prove the following theorem: if L is continuous \(L^ p(0,T;U)\to L^ p(0,T;X)\), \(1<p<\infty\), then in fact L: continuous \(L^ p(0,T;U)\to C([0,T];X)\), a lifting regularity theorem in the time variable. Moreover, we show by a parabolic example with nonhomogeneous term in the Dirichlet boundary conditions that the theorem fails to be true, if G(t) is merely a s.c. semigroup even if holomorphic. Applications of the theorem include mixed hyperbolic problems, including second order scalar hyperbolic equations defined on an open bounded domain \(\Omega \subset {\mathbb{R}}^ n\), \(\partial \Omega =\Gamma\), with nonhomogeneous term of class \(L^ 2(0,T;L^ 2(\Gamma))\) acting in the Dirichlet or in the Neumann boundary conditions. In the former case, the theorem recovers the authors’ original procedure which yielded optimal-regularity results for this dynamics [the authors, Appl. Math. Optim. 10, 275-286 (1983; Zbl 0526.35049)]; in the latter, the theorem improves upon results of J. L. Lions - E. Magenes [Nonhomogeneus boundary value problems and applications, vol. II (1972; Zbl 0227.35001)]. Extension to \(T=\infty\) is also studied.

MSC:

47F05 General theory of partial differential operators
47A50 Equations and inequalities involving linear operators, with vector unknowns
35L20 Initial-boundary value problems for second-order hyperbolic equations
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E40 Spaces of vector- and operator-valued functions
Full Text: DOI

References:

[1] S. Chang, Ph. D. dissertation, Mathematics Department, Univ. of Florida, 1984.
[2] S. Chang and I. Lasiecka, Riccati equations for nonsymmetric and nondissipative hyperbolic systems with \?\(_{2}\)-boundary controls, J. Math. Anal. Appl. 116 (1986), no. 2, 378 – 414. · Zbl 0597.93030 · doi:10.1016/S0022-247X(86)80005-1
[3] G. Da Prato, I. Lasiecka, and R. Triggiani, A direct study of the Riccati equation arising in hyperbolic boundary control problems, J. Differential Equations 64 (1986), no. 1, 26 – 47. · Zbl 0601.49003 · doi:10.1016/0022-0396(86)90069-0
[4] N. Dunford and J. T. Schwartz, Linear operators. Part I, Interscience, New York, 1958. · Zbl 0084.10402
[5] F. Flandoli, I. Lasiecka and R. Triggiani, Algebraic Riccati equations with non-smoothing observation arising in hyperbolic and Euler-Bernoulli equations, Ann. Mat. Pura Appl. (to appear). · Zbl 0674.49004
[6] Lop Fat Ho, Observabilité frontière de l’équation des ondes, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 12, 443 – 446 (English, with French summary). · Zbl 0598.35060
[7] Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. · Zbl 0078.10004
[8] J.-L. Lions, Contrôle des systèmes distribués singuliers, Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science], vol. 13, Gauthier-Villars, Montrouge, 1983 (French). · Zbl 0514.93001
[9] Jacques-Louis Lions, Contrôlabilité exacte des systèmes distribués, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 13, 471 – 475 (French, with English summary). · Zbl 0589.49022 · doi:10.1007/BFb0007542
[10] J.-L. Lions, Optimal control of systems governed by partial differential equations., Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170, Springer-Verlag, New York-Berlin, 1971. · Zbl 0203.09001
[11] Jacques-Louis Lions, Un résultat de régularité pour l’opérateur \partial &sup2;/\partial \?&sup2;+\Delta &sup2;, Current topics in partial differential equations, Kinokuniya, Tokyo, 1986, pp. 247 – 260 (French).
[12] I. Lasiecka, J.-L. Lions, and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl. (9) 65 (1986), no. 2, 149 – 192. · Zbl 0631.35051
[13] J. L. Lions and E. Magenes, Nonhomogeneous boundary value problems and applications, vols. I, II, Springer-Verlag, Berlin and New York, 1972. · Zbl 0227.35001
[14] I. Lasiecka and R. Triggiani, A cosine operator approach to modeling \?\(_{2}\)(0,\?;\?\(_{2}\)(\Gamma )) — boundary input hyperbolic equations, Appl. Math. Optim. 7 (1981), no. 1, 35 – 93. · Zbl 0473.35022 · doi:10.1007/BF01442108
[15] I. Lasiecka and R. Triggiani, Regularity of hyperbolic equations under \?\(_{2}\)(0,\?;\?\(_{2}\)(\Gamma ))-Dirichlet boundary terms, Appl. Math. Optim. 10 (1983), no. 3, 275 – 286. · Zbl 0526.35049 · doi:10.1007/BF01448390
[16] I. Lasiecka and R. Triggiani, Riccati equations for hyperbolic partial differential equations with \?\(_{2}\)(0,\?;\?\(_{2}\)(\Gamma ))-Dirichlet boundary terms, SIAM J. Control Optim. 24 (1986), no. 5, 884 – 925. · Zbl 0788.49031 · doi:10.1137/0324054
[17] -, Uniform exponential energy decay of wave equation in a bounded region with \( {L^2}(0,\infty ;{L^2}(\Gamma ))\)-feedback control in the Dirichlet boundary conditions, J. Differential Equations 65 (1986), 340-390.
[18] -, Hyperbolic equations with nonhomogeneous Neumann boundary terms. Part I: Regularity, preprint 1983.
[19] -, Sharp regularity results for hyperbolic equations of Neumann type, 1987.
[20] -, Regularity theory for a class of Euler Bernoulli equations: a cosine operator approach, Boll. Un. Mat. Ital. (to appear).
[21] I. Lasiecka and R. Triggiani, Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: a nonconservative case, SIAM J. Control Optim. 27 (1989), no. 2, 330 – 373. · Zbl 0666.49013 · doi:10.1137/0327018
[22] -, Infinite horizon quadratic cost problems for boundary control problems, Proc. 20th CDC Conference, pp. 1005-1010, Los Angeles, December 1987.
[23] Jeffrey Rauch, \cal\?\(_{2}\) is a continuable initial condition for Kreiss’ mixed problems, Comm. Pure Appl. Math. 25 (1972), 265 – 285. · Zbl 0226.35056 · doi:10.1002/cpa.3160250305
[24] David L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions, SIAM Rev. 20 (1978), no. 4, 639 – 739. · Zbl 0397.93001 · doi:10.1137/1020095
[25] Heinz-Otto Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 277 – 298. · Zbl 0188.41102 · doi:10.1002/cpa.3160230304
[26] Roberto Triggiani, A cosine operator approach to modelling boundary input hyperbolic systems, Optimization techniques (Proc. 8th IFIP Conf., Würzburg, 1977) Springer, Berlin, 1978, pp. 380 – 390. Lecture Notes in Control and Informat. Sci., Vol. 6.
[27] -, Exact boundary controllability on \( {L^2}(\Omega ) \times {H^{ - 1}}(\Omega )\) for the wave equation with Dirichlet control acting on a portion of the boundary, and related problems, Appl. Math. Optim. (to appear), Springer-Verlag Lecture Notes in Control Sciences, vol. 102, pp. 292-332, Proceedings of 3rd International Conference, Vorau, Austria, July 6-12, 1986.
[28] R. Triggiani, Wave equation on a bounded domain with boundary dissipation: an operator approach, Operator methods for optimal control problems (New Orleans, La., 1986) Lecture Notes in Pure and Appl. Math., vol. 108, Dekker, New York, 1987, pp. 283 – 310.
[29] George Weiss, Admissibility of unbounded control operators, SIAM J. Control Optim. 27 (1989), no. 3, 527 – 545. · Zbl 0685.93043 · doi:10.1137/0327028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.