×

On the classical limit of Berry’s phase integrable systems. (English) Zbl 0698.58026

The author proves that the semi-classical limit of the Berry’s phase is given in terms of Hannay’s angles. This result was conjectured by Berry.
Reviewer: D.Robert

MSC:

53D50 Geometric quantization
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
81Q99 General mathematical topics and methods in quantum theory
Full Text: DOI

References:

[1] [A-S-Y] Avron, J.E., Seiler, R., Yaffe, L.G.: Adiabatic theorems and applications to the quantum hall effect. Commun. Math. Phys.82, 33–49 (1987) · Zbl 0626.58033 · doi:10.1007/BF01209015
[2] [B] Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A392, 45–57 (1984) · Zbl 1113.81306 · doi:10.1098/rspa.1984.0023
[3] [B2] Berry, M.V.: Classical adiabatic angles and quantal adiabatic phase. J. Phys. A18, 15–27 (1985) · Zbl 0569.70020 · doi:10.1088/0305-4470/18/1/012
[4] [Ch] Charbonnel, A.M.: Comportement semi-classique du spectre conjoint d’opérateurs pseudodifférentiels qui commutent. Asymptotic Anal.1, 227–261 (1988)
[5] [Ch2] Charbonnel, A.M.: Comportement semi-classique des systèmes ergodiques, Preprint, Université de Nantes (1989)
[6] [Kn] Golin, S., Knauf, A., Marmi, S.: The Hannay angles: geometry, adiabaticity, and an example. Commun. Math. Phys.123, 95–122 (1989) · Zbl 0825.58012 · doi:10.1007/BF01244019
[7] [H] Hannay, J.H.: Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian. J. Phys. A18, 221–230 (1985) · doi:10.1088/0305-4470/18/2/011
[8] [H-R] Helffer, B., Robert, D.: Calcul fonctionelle par la transformation de Mellin et opérateurs admissibles. J. Funct. Anal.53, 246–268 (1983) · Zbl 0524.35103 · doi:10.1016/0022-1236(83)90034-4
[9] [H-M-R] Helffer, B., Martinez, A., Robert, D.: Ergodicité et limite semi-classique, Commun. Math. Phys.109, 313–326 (1987) · Zbl 0624.58039 · doi:10.1007/BF01215225
[10] [Hör] Hörmander, L.: The Weyl calculus of pseudo-differential operators. Commun. Pure Appl. Math.32, 359–443 (1979) · doi:10.1002/cpa.3160320304
[11] [K] Kato, T.: On the adiabatic theorem in quantum mechanics. J. Phys. Soc. Jpn.5, 435–439 (1950) · doi:10.1143/JPSJ.5.435
[12] [M-T] Mead, C.A., Truhlar, D.G.: On the determination of Born-Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei. J. Chem. Phys.70, 2284–2296 (1979) · doi:10.1063/1.437734
[13] [M] Montgomery, R.: The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalisation to the non-integrable case, Commun. Math. Phys.120, 269–294 (1988) · Zbl 0689.58043 · doi:10.1007/BF01217966
[14] [S-T] Schrader, R., Taylor, M.: Semiclassical asymptotics, gauge fields, and quantum chaos. J. Funct. Anal.83, 258–316 (1989) · Zbl 0679.58046 · doi:10.1016/0022-1236(89)90021-9
[15] [Se] Seiler, R.: Private communication
[16] [S] Simon, B.: Holonomy, the quantum adiabatic theorem and Berry’s phase. Phys. Rev. Lett.51, 2167–2170 (1983) · doi:10.1103/PhysRevLett.51.2167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.