×

Is every approximate trajectory of some process near an exact trajectory of a nearby process? (English) Zbl 0697.58036

Lately the study of chaotic dynamical systems with a computer has become a very active and popular field. An important question is, whether the orbits that were calculated and hence perturbed by roundoff errors and the exact orbits correspond approximately. There are some answers for the case of hyperbolic Axiom A functions. This paper gives a positive answer for the case of the famous quadratic family \(f_{\mu}(x)=\mu x(1-x)\) and the tent family \(f_{\mu}(x)=IF\) \(x\leq 1/2\) THEN \(\mu\) x ELSE \(\mu\) (1- x).
The authors show, that for points of certain sets the corresponding numerical orbits approximate the exact orbit, provided the numerical perturbation is small enough and the parameter \(\mu\) is slightly increased - with the exception of a countable number of parameter values. A counterexample illustrates the breakdown of that property.
The proof uses kneading theory by Milnor and Thurston and mainly relies on the fact that the itineraries of the considered maps are stable under perturbation - at least with an increased parameter value. The basics and the necessary theorems of symbolic dynamics are outlined nicely in the paper. A generalization from the quadratic resp. the tent maps to their respective topological and kneading properties and a generalization for maps with several critical points concludes the paper.
Reviewer: C.H.Cap

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37D99 Dynamical systems with hyperbolic behavior
26A18 Iteration of real functions in one variable
Full Text: DOI

References:

[1] Alekseev, V. M., Jakobson, M. V.: Symbolic dynamics and hyperbolic dynamic systems. Phys. Rep.75, 287-325 (1981) · doi:10.1016/0370-1573(81)90186-1
[2] Bowen, R.: On Axiom A diffeomorphisms. Reg. Conf. Ser. Math.35, Providence, RI: Am. Math. Soc. 1978 · Zbl 0383.58010
[3] Boyarsky, A.: Randomness implies order. J. Math. Anal. Appl.76, 483-497 (1980) · Zbl 0442.60004 · doi:10.1016/0022-247X(80)90044-X
[4] Collet, P., Eckmann, J.-P.: Iterated maps on the interval as dynamical systems. Boston: Birkhäuser 1980 · Zbl 0458.58002
[5] Collet, P., Crutchfield, J. P., Eckmann, J.-P.: Computing the topological entropy of maps. Commun. Math. Phys.88, 257-262 (1983) · Zbl 0529.58029 · doi:10.1007/BF01209479
[6] Coven, E. M., Kan, I., Yorke, J. A.: Pseudo-orbit shadowing in the family of tent maps. Preprint · Zbl 0651.58032
[7] Crutchfield, J. P., Farmer, J. D., Huberman, B. A.: Fluctuations and simple chaotic dynamics. Phys. Rep.92, 45-82 (1982) · doi:10.1016/0370-1573(82)90089-8
[8] Crutchfield, J. P., Packard, N. H.: Symbolic dynamics of noisy chaos. Physica7D, 201-223 (1983)
[9] Derrida, B., Gervois, A., Pomeau, Y.: Iterations of endomorphisms on the real axis and representation of numbers. Ann. Inst. Henri Poincare’29, 305-356 (1978) · Zbl 0416.28012
[10] Derrida, B., Gervois, A., Pomeau, Y.: Universal metric properties of bifurcations of endomorphisms. J. Phys.A12, 269-296 (1979) · Zbl 0416.28011
[11] Douady, A., Hubbard, J. H.: Itérations des polynômes quadratiques complexes. C. R. Acad. Sci. Paris294, 123-126 (1982) · Zbl 0483.30014
[12] Eckmann, J.-P.: Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys.53, 643-654 (1981) · Zbl 1114.37301 · doi:10.1103/RevModPhys.53.643
[13] Guckenheimer, J.: Sensitive dependence to initial conditions for one dimensional maps. Commun. Math. Phys.70, 133-160 (1979) · Zbl 0429.58012 · doi:10.1007/BF01982351
[14] Guckenheimer, J.: Bifurcations of dynamical systems. CIME Lectures Bressanone 1978. Boston: Birkhäuser 1980 · Zbl 0451.58025
[15] Guckenheimer J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcation of vectorfields. Applied Mathematical Sciences Vol.42. Berlin, Heidelberg, New York: Springer 1983 · Zbl 0515.34001
[16] Jonker, L.: Periodic orbits and kneading invariants. Proc. Lond. Math. Soc.39, 428-450 (1979) · Zbl 0425.58014 · doi:10.1112/plms/s3-39.3.428
[17] Jonker, L., Rand, D.: Bifurcations in one dimension. I. Invent. Math.62, 347-365 (1981) II. Invent. Math.63, 1-15 (1981) · Zbl 0475.58014 · doi:10.1007/BF01394248
[18] Lasota, A., Yorke, J. A.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Am. Math. Soc.186, 481-488 (1973) · Zbl 0298.28015 · doi:10.1090/S0002-9947-1973-0335758-1
[19] Lasota, A., Yorke, J. A.: On the existence of invariant measures for transformations with strictly turbulent trajectories. Bull. Acad. Polon. Sci. Ser. Sci. Math.25, 233-238 (1977) · Zbl 0357.28018
[20] Li, T.-Y., Yorke, J. A.: Period three implies chaos. Am. Math. Mon.82, 985-992 (1975) · Zbl 0351.92021 · doi:10.2307/2318254
[21] May, R. M.: Biological populations with nonoverlapping generations: Stable points, stable cycles and chaos. Science186, 645-647 (1974) · doi:10.1126/science.186.4164.645
[22] May, R. M.: Simple mathematical models with very complicated dynamics. Nature261, 459-467 (1976) · Zbl 1369.37088 · doi:10.1038/261459a0
[23] Milnor, J., Thurston, W.: On iterated maps of the interval I, II. Preprint Princeton 1977
[24] Milnor, J.: The monotonicity theorem for real quadratic maps. Bonn: Mathematische Arbeitstagung Bonn 1983 · Zbl 0557.10031
[25] Milnor, J.: On the concept of attractor. Commun. Math. Phys.99, 177-195 (1985) · Zbl 0595.58028 · doi:10.1007/BF01212280
[26] Misiurewicz, M.: Horseshoes for mappings of the interval. Bull. Acad. Polon. Sci. Ser., Sci. Math.27, 167-169 (1979) · Zbl 0459.54031
[27] Misiurewicz, M., Szlenk, W.: Entropy of piecewise monotone mappings. Stud. Math.67, 45-63 (1980) · Zbl 0445.54007
[28] Nusse, H. E.: Chaos, yet no chance to get lost. Order and structure in the chaotic dynamical behaviour of one-dimensional noninvertible Axiom A mappings arising in discrete biological models. Thesis Rijksuniversiteit Utrecht 1983 · Zbl 0521.58040
[29] Nusse, H. E. Qualitative analysis of the dynamics and stability properties for Axiom A maps. J. Math. Anal. Appl. (To appear) · Zbl 0672.58022
[30] Parry, W.: Symbolic dynamics and transformations of the unit interval. Trans. Am. Math. Soc.122, 368-378 (1966) · Zbl 0146.18604 · doi:10.1090/S0002-9947-1966-0197683-5
[31] Ruelle, D.: Small random perturbations of dynamical systems and the definition of attractors. Commun. Math. Phys.82, 137-151 (1981) · Zbl 0482.58017 · doi:10.1007/BF01206949
[32] Singer, D.: Stable orbits and bifurcations of maps of the interval. SIAM J. Appl. Math.35, 260-267 (1978) · Zbl 0391.58014 · doi:10.1137/0135020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.