×

Symmetry for degenerate parabolic equations. (English) Zbl 0697.35074

For \(0<T\leq \infty\), and \(\Omega \subset R^ n\) with boundary in \(C^ 2\), let \(C_ T\) be the cylinder \(\Omega\) \(\times (0,T)\). The authors study the equation \[ u_ t-div[a(u,| \nabla u|)\nabla u]=c(u,| \nabla u|) \] in \(C_ T\), a, and c are real valued functions satisfying suitable conditions of smoothness. They prove that under certain stated conditions \(\Omega\) is a ball and for every \(t\in (0,T)\) u(,t) is a non-decreasing radically symmetric function with respect to the center of the ball.
Reviewer: H.S.Nur

MSC:

35K65 Degenerate parabolic equations
35R35 Free boundary problems for PDEs
35B99 Qualitative properties of solutions to partial differential equations
Full Text: DOI

References:

[1] N. D. Alikakos &R. Rostamian, Gradient estimates for degenerate diffusion equations, II. Proc. Royal Soc. EdinburghA 91 (1982), 335-346. · Zbl 0523.35058
[2] H. Brezis, Opérateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert, North Holland, Amsterdam, 1973.
[3] E. Di Benedetto &A. Friedman, Regularity of solutions of nonlinear degenerate parabolic systems, J. reine angew. Math.349, 82-128 (1984).
[4] E. Di Benedetto &A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems. J. reine angew. Math.357, 1-22 (1985).
[5] E. Di Benedetto &A. Friedman, Addendum to ?Hölder estimates for nonlinear degenerate parapolic systems?, J. reine angew. Math.363, 215-220 (1985).
[6] N. Garofalo & J. L. Lewis, A symmetry result related to some overdetermined boundary value problems, to appear in American J. of Math. · Zbl 0681.35016
[7] B. Gidas, W. M. Ni &L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys.68, 209-243 (1979). · Zbl 0425.35020 · doi:10.1007/BF01221125
[8] O. A. Ladyzenskaja, V. A. Solonnikov &N. N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967. English transl., American Mathematical Society, Providence, 1968.
[9] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal.43, 304-318 (1971). · Zbl 0222.31007 · doi:10.1007/BF00250468
[10] H. Weinberger, Remark on the preceding paper by Serrin. Arch. Rational Mech. Anal.43, 319-320 (1971). · Zbl 0222.31008 · doi:10.1007/BF00250469
[11] L. Zalcman, Some inverse problems of potential theory, in: Integral Geometry,R. M. Bryant etc. ed., 337-350, American Mathematical Society, Provicence, 1987. · Zbl 0641.31003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.