×

Index, vision number and stability of complete minimal surfaces. (English) Zbl 0695.53045

A new geometric quantity, the vision number, is defined. By using this vision number combined with the Morse-Smale index theorem the author finds lower bounds for the index of minimal surfaces of finite total curvature, mainly, in \(R^ 3\) and in \(S^ 3\). He computes lower bounds for the index of the classical genus zero surfaces of Jorge-Meeks in \(R^ 3\), of the three-punctured genus \(g\geq 1\) embedded minimal surfaces of Costa, Hoffman and Meeks in \(R^ 3\) and of the Lawson’s embedded minimal surfaces in \(S^ 3\). Also, some results in global stability of non-orientable minimal surfaces are derived. For example, that any complete minimal surface in \(R^ 3\) of total curvature -2\(\pi\) is stable, and that a complete minimal surface in \(R^ 3\) with finite total curvature conformally equivalent to a Klein bottle punctured at a finite number of points is unstable.
Reviewer: C.Costa

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
Full Text: DOI

References:

[1] J. L. Barbosa & M. do Carmo, On the size of a stable minimal surface in R 3, Amer. J. Math. 98 (1976), 515-528. · Zbl 0332.53006 · doi:10.2307/2373899
[2] M. do Carmo & C. K. Peng, Stable complete minimal surfaces in R 3 are planes, Bull. Amer. Math. Soc. 1 (1979), 903-906. · Zbl 0442.53013 · doi:10.1090/S0273-0979-1979-14689-5
[3] S.-Y. Cheng & J. Tysk, An index characterization of the catenoid and index bounds for minimal surfaces in R4, pacific J. Math. 134 (1988), 251-260. · Zbl 0613.58030
[4] J. Choe, The isoperimetric inequality for a minimal surface with radially connected boundary, MSRI preprint. · Zbl 0745.53004
[5] D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three manifolds, Invent. Math. 82 (1985), 121-132. · Zbl 0573.53038 · doi:10.1007/BF01394782
[6] D. Fischer-Colbrie & R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature, Comm. Pure Appl. Math. 33 (1980), 199-211. · Zbl 0439.53060 · doi:10.1002/cpa.3160330206
[7] P. Griffiths & J. Harris, Principles of algebraic geometry, Wiley, New York, 1978. · Zbl 0408.14001
[8] R. Harvey & H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47-157. · Zbl 0584.53021 · doi:10.1007/BF02392726
[9] R. Harvey & J. Polking, Removable singularities of solutions of linear partial differential equations, Acta Math. 125 (1970), 39-56. · Zbl 0214.10001 · doi:10.1007/BF02838327
[10] D. A. Hoffman & W. H. Meeks III, Complete embedded minimal surfaces of finite total curvature, Bull. Amer. Math. Soc. 12 (1985), 134-136. · Zbl 0566.53017 · doi:10.1090/S0273-0979-1985-15318-2
[11] L. P. Jorge & W. H. Meeks III, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), 203-221. · Zbl 0517.53008 · doi:10.1016/0040-9383(83)90032-0
[12] H. B. Lawson, Jr., Complete minimal surfaces in S 3, Ann. of Math. 92 (1970), 335-374. · Zbl 0205.52001 · doi:10.2307/1970625
[13] H. B. Lawson, Jr., Lectures on minimal submanifolds, Publish or Perish, Berkeley, 1980.
[14] I. C. Lima & A. M. da Silveira, Stability of complete nonorientable minimal surfaces in R3, preprint. · Zbl 1010.53006
[15] F. J. Lopez & A. Ros, Complete minimal surfaces with index one and stable constant mean curvature surfaces, preprint. · Zbl 0679.53047
[16] W. H. Meeks III, The classification of complete minimal surfaces in R 3 with total curvature greater than ?8?, Duke Math. J. 48 (1981), 523-535. · Zbl 0472.53010 · doi:10.1215/S0012-7094-81-04829-8
[17] R. Osserman, A survey of minimal surfaces, Dover Publications, New York, 1986. · Zbl 0209.52901
[18] J. C. Polking, A survey of removable singularities, Math. Sci. Res. Inst. Publications 2 (1983), 261-292.
[19] R. M. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), 791-809. · Zbl 0575.53037
[20] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. 88 (1968), 62-105. · Zbl 0181.49702 · doi:10.2307/1970556
[21] S. Smale, On the Morse index theorem, J. Math. Mech. 14 (1965), 1049-1055. · Zbl 0166.36102
[22] M. Spivak, A comprehensive introduction to differential geometry, vol. 4, 2nd ed., Publish or Perish, Berkeley, 1979. · Zbl 0439.53003
[23] J. Tysk, Eigenvalue estimates with applications to minimal surfaces, Pacific J. Math. 128 (1987), 361-366. · Zbl 0594.58018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.