×

Accumulation of complex eigenvalues of a class of analytic operator functions. (English) Zbl 06875967

Summary: For analytic operator functions, we prove accumulation of branches of complex eigenvalues to the essential spectrum. Moreover, we show minimality and completeness of the corresponding system of eigenvectors and associated vectors. These results are used to prove sufficient conditions for eigenvalue accumulation to the poles and to infinity of rational operator functions. Finally, an application of electromagnetic field theory is given.

MSC:

47A56 Functions whose values are linear operators (operator- and matrix-valued functions, etc., including analytic and meromorphic ones)
47J10 Nonlinear spectral theory, nonlinear eigenvalue problems
47A10 Spectrum, resolvent
47A12 Numerical range, numerical radius

References:

[1] Abramov, A. A.; Aslanyan, A.; Davies, E. B., Bounds on complex eigenvalues and resonances, J. Phys. A, 34, 1, 57-72 (2001) · Zbl 1123.81415
[2] Adamjan, V.; Pivovarchik, V.; Tretter, C., On a class of non-self-adjoint quadratic matrix operator pencils arising in elasticity theory, J. Operator Theory, 47, 2, 325-341 (2002) · Zbl 1019.47017
[3] Bögli, S., Schrödinger operator with non-zero accumulation points of complex eigenvalues, Comm. Math. Phys., 352, 2, 629-639 (2017) · Zbl 1364.35256
[4] Cessenat, M., Mathematical Methods in Electromagnetism, Ser. Adv. Math. Appl. Sci., vol. 41 (1996), World Scientific Publishing Co. Inc.: World Scientific Publishing Co. Inc. River Edge, NJ · Zbl 0917.65099
[5] Cocquet, P-H.; Mazet, P-A.; Mouysset, V., On the existence and uniqueness of a solution for some frequency-dependent partial differential equations coming from the modeling of metamaterials, SIAM J. Math. Anal., 44, 6, 3806-3833 (2012) · Zbl 1259.35193
[6] Çolakoğlu, N., The numerical range of a class of self-adjoint operator functions, (Recent Advances in Matrix and Operator Theory. Recent Advances in Matrix and Operator Theory, Oper. Theory Adv. Appl., vol. 179 (2008), Birkhäuser: Birkhäuser Basel), 145-155 · Zbl 1160.47010
[7] Dunford, N.; Schwartz, J. T., Linear Operators. Part I, Wiley Class. Libr. (1988), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York
[8] Effenberger, C.; Kressner, D.; Engström, C., Linearization techniques for band structure calculations in absorbing photonic crystals, Internat. J. Numer. Methods Engrg., 89, 2, 180-191 (2012) · Zbl 1242.74110
[9] Engström, C., On the spectrum of a holomorphic operator-valued function with applications to absorptive photonic crystals, Math. Models Methods Appl. Sci., 20, 8, 1319-1341 (2010) · Zbl 1213.47013
[10] Engström, C.; Langer, H.; Tretter, C., Rational eigenvalue problems and applications to photonic crystals, J. Math. Anal. Appl., 445, 1, 240-279 (2017) · Zbl 1351.65084
[11] Engström, C.; Torshage, A., Enclosure of the numerical range of a class of non-selfadjoint rational operator, Integral Equations Operator Theory, 88, 2, 151-184 (2017) · Zbl 06805232
[12] Engström, C.; Torshage, A., On equivalence and linearization of operator matrix functions with unbounded entries, Integral Equations Operator Theory, 89, 4, 465-492 (2017) · Zbl 1508.47019
[13] Frank, R. L., Eigenvalue bounds for Schrödinger operators with complex potentials, Bull. Lond. Math. Soc., 43, 4, 745-750 (2011) · Zbl 1228.35158
[14] Frank, R. L.; Laptev, A.; Safronov, O., On the number of eigenvalues of Schrödinger operators with complex potentials, J. Lond. Math. Soc. (2), 94, 2, 377-390 (2016) · Zbl 1358.35074
[15] Gohberg, I. C.; Kaashoek, M. A.; Lay, D. C., Equivalence, linearization, and decomposition of holomorphic operator functions, J. Funct. Anal., 28, 1, 102-144 (1978) · Zbl 0384.47018
[16] Hansmann, M., Variation of discrete spectra for non-selfadjoint perturbations of selfadjoint operators, Integral Equations Operator Theory, 76, 2, 163-178 (2013) · Zbl 1286.47012
[17] Kaashoek, M. A.; Verduyn Lunel, S. M., Characteristic matrices and spectral properties of evolutionary systems, Trans. Amer. Math. Soc., 334, 2, 479-517 (1992) · Zbl 0768.34041
[18] Kreĭn, M. G.; Langer, H., On some mathematical principles in the linear theory of damped oscillations of continua. I, II, Integral Equations Operator Theory, 1, 364-399 (1978), 539-566 · Zbl 0401.47017
[19] Kuchment, P., Floquet Theory for Partial Differential Equations, Oper. Theory Adv. Appl., vol. 60 (1993), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0789.35002
[20] Langer, H.; Markus, A.; Matsaev, V., Self-adjoint analytic operator functions and their local spectral function, J. Funct. Anal., 235, 1, 193-225 (2006) · Zbl 1125.47010
[21] Langer, H.; Markus, A.; Matsaev, V., Linearization, factorization, and the spectral compression of a self-adjoint analytic operator function under the condition (VM), (A Panorama of Modern Operator Theory and Related Topics. A Panorama of Modern Operator Theory and Related Topics, Oper. Theory Adv. Appl., vol. 218 (2012), Birkhäuser/Springer Basel AG: Birkhäuser/Springer Basel AG Basel), 445-463 · Zbl 1272.47023
[22] Langer, M.; Strauss, M., Triple variational principles for self-adjoint operator functions, J. Funct. Anal., 270, 6, 2019-2047 (2016) · Zbl 1334.49150
[23] Laptev, A.; Safronov, O., Eigenvalue estimates for Schrödinger operators with complex potentials, Comm. Math. Phys., 292, 1, 29-54 (2009) · Zbl 1185.35045
[24] Markus, A. S., Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Monogr., vol. 71 (1988), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0678.47005
[25] Pavlov, B. S., On a non-selfadjoint Schrödinger operator, (Problems of Mathematical Physics, No. 1, Spectral Theory and Wave Processes (1966), Izdat. Leningrad. Univ.: Izdat. Leningrad. Univ. Leningrad), 102-132, (in Russian) · Zbl 0171.08602
[26] Pavlov, B. S., On a non-selfadjoint Schrödinger operator. II, (Problems of Mathematical Physics, No. 2, Spectral Theory, Diffraction Problems (1967), Izdat. Leningrad. Univ.: Izdat. Leningrad. Univ. Leningrad), 133-157, (in Russian) · Zbl 0189.38103
[27] Pavlov, B. S., On a nonselfadjoint Schrödinger operator. III, (Problems of Mathematical Physics, No. 3: Spectral Theory (1968), Izdat. Leningrad. Univ.: Izdat. Leningrad. Univ. Leningrad), 59-80, (in Russian)
[28] Rodnianski, I.; Schlag, W., Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155, 3, 451-513 (2004) · Zbl 1063.35035
[29] Sambou, D., On eigenvalue accumulation for non-self-adjoint magnetic operators, J. Math. Pures Appl. (9), 108, 3, 306-332 (2017) · Zbl 1370.35225
[30] Sanchez-Palencia, E., Non-Homogeneous Media and Vibration Theory, Lecture Notes in Phys. (1980), Springer: Springer Berlin · Zbl 0432.70002
[31] Sjöberg, D.; Engström, C.; Kristensson, G.; Wall, D. J.N.; Wellander, N., A Floquet-Bloch decomposition of Maxwell’s equations applied to homogenization, Multiscale Model. Simul., 4, 1, 149-171 (2005) · Zbl 1088.35071
[32] Tip, A.; Moroz, A.; Combes, J. M., Band structure of absorptive photonic crystals, J. Phys. A: Math. Gen., 33, 35, 6223 (2000) · Zbl 1033.78515
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.