×

On strongly nonlinear elliptic variational inequalities. (English) Zbl 0687.35043

The aim of the paper is to prove the existence of solutions of an elliptic variational inequality involving a possibly unbounded domain \(\Omega \subset {\mathbb{R}}^ n\). To describe the considered problem more precisely let V be a closed subspace of the Sobolev space \(W^ m_ p(\Omega)\) and \(K\subset V\) a closed convex set containing 0. \(K^ 0\) denotes the set of all \(v\in K\) such that \(D^{\alpha}v\in L^{\infty}(\Omega)\) for \(| \alpha | \leq m\) and \(v(x)=0\) a.e. for sufficiently large \(| x|\). Furthermore, it is assumed that for each \(v\in K^ 0\) there are \(v_ j\in C^{\infty}_ 0({\mathbb{R}}^ n)\) such that \(v_{j|_{\Omega}}\in K\), \(v_{j|_{\Omega}}\to v\) strongly in \(W^ m_ p(\Omega)\) and \(\sup | D^{\alpha}v_ j| \leq c_{\alpha}.\) Under certain assumptions concerning the given functions \(f_{\alpha}\) and \(g_{\alpha}\) the author proves that for any linear continuous functional G over V there is a \(u\in K\), which solves the variational inequality \[ \begin{split} \sum_{|\alpha|\leq m} \int_{\Omega} f_{\alpha} (x,u,\ldots,D^{\beta}u,\ldots) (D^{\alpha}v-D^{\alpha}u) dx + \\ + \sum_{|\alpha|\leq m-1} \int_{\Omega} g_{\alpha} (x, u, \ldots, D^{\beta}u, \ldots) (D^{\beta}v - D^{\beta}u) dx \geq <G,v- u>, \\ \text{ for all }v\in K^ 0\quad (| \beta | \leq m). \end{split} \] It is proved that its solutions can be obtained as a limit of solutions of specified variational inequalities involving \(\Omega_ r = \Omega \cap B_ r\), \(B_ r = \left\{ x\in\mathbb{R}^ n \left| | x| <r\right.\right\}\).
Reviewer: M.Goebel

MSC:

35J85 Unilateral problems; variational inequalities (elliptic type) (MSC2000)
35J35 Variational methods for higher-order elliptic equations
35A35 Theoretical approximation in context of PDEs
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] R. Landes, Quasilineare elliptische Differentialoperatoren mit starkem Wachstum in den Termen höchster Ordnung,Math. Z.,157 (1977), 23–26. · Zbl 0372.35033 · doi:10.1007/BF01214677
[2] R. Landes, Two existence theorems for nonlinear elliptic equations,J. Differential Equations,33 (1979), 45–57. · doi:10.1016/0022-0396(79)90079-2
[3] R. Landes, Quasilinear elliptic operators and weak solutions of the Euler equation,Manuscripta Math.,27 (1979), 47–72. · Zbl 0398.35033 · doi:10.1007/BF01297737
[4] R. Landes, On Galerkin’s method in the existence theory of quasilinear elliptic equations,J. Functional Analysis,39 (1980), 123–148. · Zbl 0452.35037 · doi:10.1016/0022-1236(80)90009-9
[5] V. Mustonen-C. G. Simader, On the existence and uniqueness of solutions for strongly nonlinear elliptic variational problems,Ann. Acad. Sci. Fenn. Ser. A. I. Math.,6 (1981), 233–254. · Zbl 0513.35033
[6] V. Mustonen, Mappings of monotone type and nonlinear obstacle problem,Bayreuther Mathematische Schriften, Heft 17 (1984), 171–183. · Zbl 0575.35024
[7] C. G. Simader, Remarks on uniqueness and stability of weak solutions of strongly nonlinear elliptic equations,Bayreuther Mathematische Schriften, Heft11 (1982), 67–79. · Zbl 0501.35034
[8] R. Landes-V. Mustonen, Boundary value problems for strongly nonlinear second order elliptic equations,Bolletino U.M.I., (4)4-B (1985), 15–32. · Zbl 0574.35034
[9] J. R. L. Webb, Boundary value problems for strongly nonlinear elliptic equations,J. London Math. Soc.,21 (1980), 123–132. · Zbl 0438.35029 · doi:10.1112/jlms/s2-21.1.123
[10] L. Simon, Variational inequalities for strongly nonlinear elliptic operators,Annales Univ. Sci. Budapest,29 (1986), 231–240. · Zbl 0658.35042
[11] L. Simon, On approximation of the solutions of strongly nonlinear elliptic equations in unbounded domains,Studia Math. Hung.,19 (1984), 421–430. · Zbl 0618.35044
[12] L. Simon, Some remarks on strongly nonlinear elliptic problems in unbounded domains,Annales Univ. Sci. Budapest,30 (1987), 265–283. · Zbl 0657.35056
[13] О. В. Бесов-В. П. Ильин-С. М. Никольский,Инмеzральные nремав ленuя функчuŭ u меоремы вложенuя, Наука, (Москва, 1975). · Zbl 1154.68045
[14] J. R. L. Webb, Strongly nonlinear elliptic equations,Journées d’Analyse Non Linéaires (Besancon, 1977), Lecture Notes in Math. 665 (1978), 242–256.
[15] L. Simon, On boundary value problems for nonlinear elliptic equations on unbounded domains,Publ. Math. Debrecen,34 (1987), 75–81. · Zbl 0645.35032
[16] R. E. Edwards,Functional analysis, Holt, Rinehart and Winston, 1965. · Zbl 0182.16101
[17] K. Yosida,Functional analysis, Springer, 1965. · Zbl 0126.11504
[18] R. A. Adams,Sobolev spaces, Academic Press, 1975. · Zbl 0314.46030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.