×

Multiloop calculations in p-adic string theory and Bruhat-Tits trees. (English) Zbl 0685.22005

The approach to p-adic string theory proposed by the third author [ibid. 123, No.3, 463-483 (1989; Zbl 0676.22006)] is further developed. In [loc. cit.] the p-adic analog of the interior of the open string world sheet has been proposed to be a Bruhat-Tits tree T; moreover, a simple local action on T (of gaussian type) has been constructed which reproduces the correct p-adic amplitudes. In the present paper the multiloop generalization of the above results is considered. The B-T tree is viewed as a p-adic zero genus surface. The p-adic surfaces of higher genera are obtained by factorizing this tree by some Schottky group. This gives a graph with cycles. By considering the reduced graph, i.e. the graph obtained by retaining only the cycles, one can introduce the p-adic counterpart of the Jacobian and other relevant notions. To produce the string amplitudes out of a local action one has to solve the analog of Neumann boundary problem. The problem of finding the relevant Green functions is solved within path integral approach. Having this done the authors calculate the tachyon string amplitudes.
Finally, some mathematical problems concerning the correct normalization and construction of the amplitudes for the emission of higher spin states are discussed.
Reviewer: P.Maślanka

MSC:

22E35 Analysis on \(p\)-adic Lie groups
81T08 Constructive quantum field theory
83E99 Unified, higher-dimensional and super field theories
30F10 Compact Riemann surfaces and uniformization
14H25 Arithmetic ground fields for curves

Citations:

Zbl 0676.22006
Full Text: DOI

References:

[1] Volovich, I.V.:p-adic string. Class. Quant. Gravity4, 183-187 (1987) · Zbl 0636.12015
[2] Grossman, B.:p-Adic strings, the Weyl conjecture and anomalies. Rockfeller Univ. preprint DOE/ER/40325-7-Task B
[3] Freund, P.G.O., Olson, M.: Non-archimedean strings. Phys. Lett.199B, 186-190 (1987)
[4] Freund, P.G.O., Witten, E.: Adelic string amplitudes. Phys. Lett.199B, 191-194 (1987)
[5] Gervais, J.L.:p-adic analyticity and Virasoro algebras for conformal theories in more than two dimensions. Phys. Lett.201B, 306-310 (1988)
[6] Brekke, L., Freund, P.G.O., Olson, M., Witten, E.: Non-archimedean string dynamics. Nucl. Phys. B302, 365-402 (1988) · doi:10.1016/0550-3213(88)90207-6
[7] Brekke, L., Freund, P.G.O., Meltzer, E., Olson, M.: Adelic stringN-point amplitudes. Chicago preprint EFI-88-34 (1988)
[8] Knizhnik, V.G., Polyakov, A.M.: Unpublished (1987)
[9] Parisi, G.: Onp-adic functional integral. Mod. Phys. Lett. A3, 639-643 (1988) · doi:10.1142/S0217732388000763
[10] Spokoiny, B.L.: Quantum geometry of non-archimedean particles and strings. Phys. Lett.208B, 401-406 (1988)
[11] Zhang, R.B.: Lagrangian formulation of open and closedp-adic strings. Phys. Lett.209B, 229-232 (1988)
[12] Zabrodin, A.: Non-archimedean strings and Bruhat-Tits trees. Mod. Phys. Lett. A (to appear) · Zbl 0676.22006
[13] Zabrodin, A.: Non-archimedean string action and Bruhat-Tits trees. Commun. Math. Phys.123, 463-483 (1989) · Zbl 0676.22006 · doi:10.1007/BF01238811
[14] Manin, Yu.: Reflections on arithmetic physics. In: Lectures at Poiana-Brasov School on strings and conformal field theory, Sept. 1987
[15] Chekhov, L.: A note on multiloop calculus inp-adic string theory. Mod. Phys. Lett. A4, 1151-1158 (1989) · doi:10.1142/S0217732389001337
[16] Zinov’ev, Yu.M.: LatticeR-gauge theories. Teor. Mat. Fiz.49, 156-163 (1981) (in Russian)
[17] Lebedev, D.R., Morozov, A.Yu.: An attempt ofp-adic one-loop computation. Preprint ITEP 163-88 Moscow, 1988, Mod. Phys. Lett. A (to appear)
[18] Chekhov, L., Mironov, A., Zabrodin, A.: Multiloop calculus inp-adic string theory and Bruhat-Tits trees. Mod. Phys. Lett. A4, 1227-1235 (1989) · Zbl 0685.22005 · doi:10.1142/S0217732389001428
[19] Manin, Yu.I.:p-adic automorphic functions. Sovt. Probl. Mat., Vol.3, 5-92 Moscow: VINITI 1974 (in Russian) · Zbl 0348.12016
[20] Gerritzen, L., van der Put, M.: Schottky groups and Mumford curves. Berlin, Heidelberg, New York: Springer 1980 · Zbl 0442.14009
[21] Mumford, D.: An analytic construction of degenerating curves over complete local rings. Compos. Math.24, 129-174 (1972) · Zbl 0228.14011
[22] Serre, J.P.: Trees. Berlin, Heidelberg, New York: Springer 1980
[23] Cartier, P.: Harmonic analysis on trees. In: Harmonic analysis on homogeneous spaces. Proc. Symp. Pure Math., Vol.26, 419-424. Providence, R.I. 1973 · Zbl 0309.22009
[24] Bobenko, A.I.: Uniformization and finite-gap integration. Preprint LOMI P-10-86, Leningrad, 1986 (in Russian) · Zbl 0659.35086
[25] Morozov, A.Yu., Rosly, A.A.: Strings and open Riemann surfaces. Preprint ITEP 149-88, Moscow, 1988
[26] Chekhov, L., Mironov, A., Zabrodin, A.: To be published elsewhere
[27] Lang, S.: Fundamentals of diophantine geometry. Berlin, Heidelberg, New York: Springer 1983 · Zbl 0528.14013
[28] Green, M., Schwarz, J., Witten, E.: Superstrings, vv.I,II. Cambridge: Cambridge Univ. Press 1987
[29] Druhl, Wagner,.: Ann. Phys.141, 225-261 (1982) · doi:10.1016/0003-4916(82)90286-X
[30] Di Vecchia, P., Hornfeck, K., Frau, H., Lerda, A., Sciuto, S.:N-string, g-loop vertex for the bosonic string. Phys. Lett.206B, 643-562 (1988)
[31] Mumford, D.: Algebraic geometry. v I. Complex projective varieties. Berlin, Heidelberg, New York: Springer 1976; · Zbl 0356.14002
[32] Schafarevich, I.: The foundations of algebraic geometry. v.I,II, Moscow: Nauka 1988 (in Russian)
[33] Chekhov, L.O., Mironov, A.D., Zabrodin, A.V.: Work in progress
[34] Faltings, G.: Calculus on arithmetic surfaces. Ann. Math.119, 387-424 (1984) · Zbl 0559.14005 · doi:10.2307/2007043
[35] Cohen, A., Moore, J., Nelson, P., Polchinski, J.: Semi-off-shell string amplitudes. Nucl. Phys. B281, 127-144 (1987) · doi:10.1016/0550-3213(87)90250-1
[36] Silverman, J.: The arithmetic of elliptic curves, Berlin, Heidelberg, New York: Springer 1986 · Zbl 0585.14026
[37] Manin, Yu.I.: New dimensions in geometry. In: Arbeitstagung Bonn 1984. Lecture Notes in Mathematics vol. 1111. Berlin, Heidelberg, New York: Springer 1984 · Zbl 0577.14002
[38] Arakelov, S.: An intersection theory for divisors on an arithmetic surface. Izv. Akad. Nauk38, 1179-1192 (1974)
[39] Arakelov, S.: Theory of inersections on the arithmetic surface. Proc. Int. Congr. Vancouver, 405-408 (1974)
[40] Yamakoshi, H.: Arithmetic of strings. Phys. Lett.207B, 426-428 (1988)
[41] Pressley, A., Segal, G.: Loop groups. Oxford: Oxford Univ. Press 1986 · Zbl 0618.22011
[42] Ishibashi, N., Matsuo, Y., Ooguri, H.: Soliton equations and free fermions on Riemann surfaces. Mod. Phys. Lett. A2, 119-130 (1987); · doi:10.1142/S0217732387000161
[43] Alvarez-Gaumé, L., Gomes, C., Moore, G., Vafa, C.: Strings in the operator formalism. Nucl. Phys. B303, 455-507 (1988); · doi:10.1016/0550-3213(88)90391-4
[44] Morozov, A.: String theory and the structure of universal moduli space. Phys. Lett.196B, 325-327 (1987);
[45] Zabrodin, A.: Fermions on a Riemann surface and Kadomtzev-Petviashvili equation. Teor. Mat. Fiz.78, N2 (1989) (in Russian) · Zbl 0691.35074
[46] Marshakov, A., Zabrodin, A.: Newp-adic string amplitudes. Submitted to Phys. Lett. B. · Zbl 1020.81789
[47] Mumford, D.: Tata lectures on Theta. I,II. Boston, Basel, Stuttgart: Birkhäuser 1984 · Zbl 0549.14014
[48] Losev, A.: ITEP preprint, 1989, to appear in Pizma v ZhETF
[49] Martinec, E.: Conformal field theory on a (super-) Riemann surface. Nucl. Phys. B281, 157-210 (1987) · doi:10.1016/0550-3213(87)90252-5
[50] Manin, Yu.: Cubic forms. 1974, Moscow (in Russian) · Zbl 0277.14014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.