×

Self-equivalent flows associated with the generalized eigenvalue problem. (English) Zbl 0684.65037

The authors use elementary Lie theory to develop a family of algorithms for solving the generalized eigenvalue problem \(Ax=\lambda Bx\) for arbitrary pairs of nonsingular matrices. The family (referred as FGZ algorithms) includes the well known LZ algorithm of L. Kaufman [SIAM J. Numer. Anal. 11, 997-1024 (1974; Zbl 0294.65025)] and the QZ algorithm of C. B. Moler and G. W. Stewart [SIAM J. Numer. Anal. 10, 241-256 (1973; Zbl 0225.65046)], as well as new algorithms called SZ and HZ. The continuous analogues of the unshifted and shifted LZ and QZ algorithms are presented. For each considered algorithm a family of associated flows is constructed.
Reviewer: D.Herceg

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
37C10 Dynamics induced by flows and semiflows

References:

[1] Brebner, M. A.; Grad, J., Eigenvalues of Ax=λBx for real symmetric matrices \(A\) and \(B\) computed by reduction to a pseudosymmetric form and the HR process, Linear Algebra Appl., 43, 99-118 (1982) · Zbl 0485.65029
[2] Bunse, W.; Bunse-Gerstner, A., Numerische Lineare Algebra (1985), B. G. Teubner: B. G. Teubner Stuttgart · Zbl 0547.65018
[3] Bunse-Gerstner, A., An analysis of the HR algorithm for computing the eigenvalues of a matrix, Linear Algebra Appl., 35, 155-178 (1981) · Zbl 0462.65021
[4] Bunse-Gerstner, A., Matrix factorizations for symplectic QR-like methods, Linear Algebra Appl., 83, 49-77 (1986) · Zbl 0616.65042
[5] Cohn, P. M., Lie Groups (1957), Cambridge U.P · Zbl 0084.03201
[6] Chu, M., The generalized Toda flow, the QR algorithm, and the centre manifold theory, SIAM J. Algebraic Methods, 5, 187-201 (1984) · Zbl 0539.65015
[7] Chu, M., A differential equation approach to the singular value decomposition of bidiagonal matrices, Linear Algebra Appl., 80, 71-80 (1986) · Zbl 0601.15005
[8] Chu, M., A continuous approximation to the generalized Schur decomposition, Linear Algebra Appl., 78, 119-132 (1986) · Zbl 0595.15010
[9] Deift, P.; Nanda, T.; Tomei, C., Differential equations for the symmetric eigenvalue problem, SIAM J. Numer. Anal., 20, 1-22 (1983) · Zbl 0526.65032
[10] Golub, G.; Van Loan, C., Matrix Computations (1983), Johns Hopkins U.P: Johns Hopkins U.P Baltimore · Zbl 0559.65011
[11] Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces (1978), Academic: Academic New York · Zbl 0451.53038
[12] Kaufman, L., The LZ algorithm to solve the generalized eigenvalue problem, SIAM J. Numer. Anal., 11, 997-1024 (1974) · Zbl 0294.65025
[13] Moler, C. B.; Stewart, G. W., An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal., 10, 241-256 (1973) · Zbl 0253.65019
[14] Nanda, T., Isospectral Flows on Band Matrices, (Doctoral Dissertation (1982), Courant Inst: Courant Inst New York)
[15] Nanda, T., Differential equations and the QR algorithm, SIAM J. Numer. Anal., 22, 310-321 (1985) · Zbl 0586.65030
[16] Rutishauser, H., Ein Infinitesimales Analogon zum Quotienten-Differenzen-Algorithmus, Arch. Math., 5, 132-137 (1954) · Zbl 0055.34801
[17] Rutishauser, H., Solution of eigenvalue problems with the LR-transformation, Nat. Bur. Standards Appl. Math. Ser., 49, 47-81 (1958) · Zbl 0123.11303
[18] Symes, W. W., The QR algorithm and scattering for the finite nonperiodic Toda lattice, Phys. D, 4D, 275-280 (1982) · Zbl 1194.37112
[19] Warner, F. W., Foundations of Differentiable Manifolds and Lie Groups (1983), Springer: Springer New York · Zbl 0516.58001
[20] Watkins, D. S., Isospectral flows, SIAM Rev., 26, 379-391 (1984) · Zbl 0559.65018
[21] Watkins, D. S.; Elsner, L., Self-similar flows, Linear Algebra Appl., 110, 213-242 (1988) · Zbl 0666.15008
[22] Watkins, D. S.; Elsner, L., Self-equivalent flows associated with the singular-value decomposition, SIAM J. Matrix Anal. Appl., 10 (1989), to appear · Zbl 0684.65038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.