×

Spreading of singularities at the boundary in semilinear hyperbolic mixed problems. I: Microlocal \(H^{s,s'}\) regularity. (English) Zbl 0678.58039

We begin a study of how singularities spread, due to interactions at the boundary, in mixed problems for semilinear strictly hyperbolic equations on domains \(\Omega \subset R^ n\). For second-order problems with Dirichlet conditions, solutions \(u\in H^ s_{loc}({\bar \Omega})\), \(s>(n+1)/2\), can have anomalous singularities of strength at most \(\sim 2s-n/2\). This was proved by F. David and the author [Am. J. Math. 109, 1087-1109 (1987; Zbl 0659.35068)] by an argument combining an \(H^ s\) propagation theorem for linear equations with an \(H^ s\) microlocal algebra lemma. When the high-order regime \((H^ r,r>2s-n/2)\) is considered, it becomes clear that to answer even the simplest questions about spreading at the boundary, such \(H^ s\) results are inadequate.
A theorem describing propagation of microlocal \(H^{s,s'}\) regularity along generalized bicharacteristics for linear equations is needed (so that one can “propagate in the second index”), together with appropriate \(H^{s,s'}\) microlocal algebra lemmas. We prove such \(H^{s,s'}\) results here, and give three applications to semilinear problems. For solutions whose strongest incoming singularities are confined to proper cones, we prove a high-order regularity propagation theorem. This enables one to identify regions into which singularities arising from interactions at the boundary cannot spread. We also prove a refinement of the 2s theorem of the paper cited above.
Finally, we discuss examples of second-order problems in which anomalous singularities of strength \(\sim 2s-n/2\) arise due to crossing at the boundary. Here the role of the \(H^{s,s'}\) results in detecting the singularities is emphasized. These examples show that for second-order mixed problems, the analogue of Beals’ 3s theorem does not hold for reflection at the boundary: although \(H^ r\) regularity for \(r<\sim 3s- n\) propagates in free space, for \(r>\sim 2s-n/2\) it does not in general reflect.
Reviewer: M.Williams

MSC:

58J47 Propagation of singularities; initial value problems on manifolds

Citations:

Zbl 0659.35068
Full Text: DOI

References:

[1] A. Alabidi, Réflexion transverse des singularités pour un problème aux limites non linéaire d’ordre \(2\) , C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 10, 287-290. · Zbl 0601.35005
[2] M. Beals, Spreading of singularities for a semilinear wave equation , Duke Math. J. 49 (1982), no. 2, 275-286. · Zbl 0496.35059 · doi:10.1215/S0012-7094-82-04918-3
[3] M. Beals, Self-spreading and strength of singularities for solutions to semilinear wave equations , Ann. of Math. (2) 118 (1983), no. 1, 187-214. JSTOR: · Zbl 0522.35064 · doi:10.2307/2006959
[4] Michael Beals, Propagation of smoothness for nonlinear second-order strictly hyperbolic differential equations , Pseudodifferential operators and applications (Notre Dame, Ind., 1984), Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 21-44. · Zbl 0575.35062
[5] M. Beals and G. Métivier, Progressing wave solutions to certain nonlinear mixed problems , Duke Math. J. 53 (1986), no. 1, 125-137. · Zbl 0613.35050 · doi:10.1215/S0012-7094-86-05307-X
[6] J. Berning and M. Reed, Reflection of singularities of one-dimensional semilinear wave equations at boundaries , J. Math. Anal. Appl. 72 (1979), no. 2, 635-653. · Zbl 0435.35055 · doi:10.1016/0022-247X(79)90254-3
[7] J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 2, 209-246. · Zbl 0495.35024
[8] F. David and M. Williams, Propagation of singularities of solutions to semilinear boundary value problems , Bull. Amer. Math. Soc. (N.S.) 15 (1986), no. 2, 201-204. · Zbl 0614.35059 · doi:10.1090/S0273-0979-1986-15472-8
[9] F. David and M. Williams, Singularities of solutions to semilinear boundary value problems , Amer. J. Math, to appear. JSTOR: · Zbl 0659.35068 · doi:10.2307/2374586
[10] L. Hörmander, The analysis of linear partial differential operators. III , Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. · Zbl 0601.35001
[11] E. Leichtnam, Régularité microlocale pour des problèmes de Dirichlet non linéaires non caractéristiques d’ordre deux à bord peu régulier , C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 2, 45-48. · Zbl 0605.35026
[12] R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. II , Comm. Pure Appl. Math. 35 (1982), no. 2, 129-168. · Zbl 0546.35083 · doi:10.1002/cpa.3160350202
[13] G. Metivier, Propagation, interaction, and reflection of discontinuous progressing waves for semilinear hyperbolic systems , preprint. JSTOR: · Zbl 0687.35021 · doi:10.2307/2374510
[14] M. Oberguggenberger, Propagation of singularities for semilinear mixed hyperbolic systems in two variables , dissertation, Duke University, 1981.
[15] J. Rauch, Singularities of solutions to semilinear wave equations , J. Math. Pures Appl. (9) 58 (1979), no. 3, 299-308. · Zbl 0388.35045
[16] J. Rauch and M. Reed, Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension , Duke Math. J. 49 (1982), no. 2, 397-475. · Zbl 0503.35055 · doi:10.1215/S0012-7094-82-04925-0
[17] M. Reed, Propagation of singularities for non-linear wave equations in one dimension , Comm. Partial Differential Equations 3 (1978), no. 2, 153-199. · Zbl 0377.35047 · doi:10.1080/0360530780882063
[18] M. Sablé-Tougeron, Régularité microlocale pour des problèmes aux limites non linéaires , Ann. Inst. Fourier (Grenoble) 36 (1986), no. 1, 39-82. · Zbl 0577.35004 · doi:10.5802/aif.1037
[19] M. Williams, Spreading of singularities at the boundary in semilinear hyperbolic mixed problems II , (in preparation). · Zbl 0701.58055 · doi:10.2307/2001029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.