×

Strong selection or rejection of spatially periodic patterns in degenerate bifurcations. (English) Zbl 0677.76046

Summary: When studying bifurcation space-periodic solutions one often has a situation, common in many problems of fluid dynamics, in which in the R-k plane (R a control parameter such as Reynolds number, k wave number) the passage from linear stability to instability is characterized by a parabola-like curve, having a minimum at \(R_ c\), \(k_ c\). We analyse classes of problems in which the coefficients of nonlinear terms in the amplitude equation go through zero near \(k_ c\). Various examples of such degenerate problems can be found in the literature, but have not been studied yet. We give an extensive classification of bifurcation pictures, which display rather unusual behaviour.
We further study the stability of these periodic solutions subject to quite general perturbation. We find as a general result that all bifurcating solutions are unstable except for a small neighbourhood of a curve \(\Gamma\) in the R-k plane. There is hence a strong selection mechanism of (periodic) patterns, which fixes, for each value of R, with a very small uncertainty, the wave number of the stable bifurcating periodic solution. For one class of problems the curve \(\Gamma\) continues to exist for all values of R for which our theory is consistent. For another class the curve stops at a value \(R^*>R_ c\). For \(R>R^*\) all bifurcating periodic solutions are unstable. In this case instability provides a mechanism of rejection of all periodic patterns. In the last section we analyse the particular case of the Blasius boundary-layer flow.

MSC:

76E99 Hydrodynamic stability
76E30 Nonlinear effects in hydrodynamic stability
Full Text: DOI

References:

[1] Dhanak, M. R., On certain aspects of three-dimensional instability in parallel flows, (Proc. R. Soc. London A, 385 (1983)), 53-84 · Zbl 0542.76052
[2] DiPrima, R.; Eckhaus, W.; Segel, L., Non-linear wave-number interaction in near-critical two-dimensional flows, J. Fluid Mech., 49, 705-744 (1971) · Zbl 0229.76039
[3] DiPrima, R.; Grannick, R. N., A non-linear investigation of the stability of flow between counter-rotating cylinders, (Proc. IUTAM Symp. Inst. Cont. Syst.. Proc. IUTAM Symp. Inst. Cont. Syst., Herrenall 1969 (1971), Springer: Springer Berlin), 55-60 · Zbl 0222.76038
[4] Eagles, M. P., Supercritical flow in a diverging channel, J. Fluid Mech., 57, 149-160 (1973) · Zbl 0256.76032
[5] Eckhaus, W., Problèmes non linéaires de stabilité dans un espace a deux dimensions. Première partie: solutions périodiques, J. de Mécanique, I, 413-438 (1962)
[6] Eckhaus, W., Problèmes non linéaires de stabilité dans un espace a deux dimensions. deuxième partie: stabilité des solutions périodiques, J. de. Mécanique, II, 153-172 (1963)
[7] Eckhaus, W., Studies in non-linear stability theory, Springer Tracts in Nat. Phil., 6 (1965) · Zbl 0125.33101
[8] Guiraud, J.-P.; Zeytounian, R. Kh., Note sur la formation et l’evolution non linéaire d’un paquet d’ondes de Tollmien Schlichting, J. de Mécanique, 17, 387-402 (1978) · Zbl 0393.76032
[9] Iooss, G.; Coullet, P.; Demay, Y., Large scale modulations in the Taylor-Couette Problem with counterrotating cylinders, Université de Nice. Lab. C.N.R.S., 168 (1986), preprint
[10] Keefe, L. R., Dynamics of perturbed wave train solutions to the Ginzburg-Landau equation, Studies in Appl. Math., LXXIII (1985) · Zbl 0575.76055
[11] Kramer, L.; Zimmerman, W., On the Eckhaus instability for spatially periodic patterns, Physica D, 16, 221-232 (1985) · Zbl 0589.58011
[12] Newell, A. C.; Whitehead, J. A., Finite bandwidth, finite amplitude convection, J. Fluid Mech., 38, 279 (1969) · Zbl 0187.25102
[13] Newell, A. C.; Whitehead, J. A., Review of the finite bandwidth concept, (Proc. IUTAM Symp. Inst. Cont. Syst.. Proc. IUTAM Symp. Inst. Cont. Syst., Herrenalb 1969 (1971), Springer: Springer Berlin), 284-289 · Zbl 0247.76039
[14] Newell, A. C., Envelope equations, Lect. Appl. Math. AMS, 15, 157-163 (1974) · Zbl 0291.35005
[15] Moon, H. T.; Huere, P.; Redekopp, L. G., Transition to chaos in the Ginzburg-Landau equation, Physica D, 7, 135-150 (1983) · Zbl 0558.58030
[16] Pekeris, C. L.; Shkoller, B., Stability of plane Poiseuille flow to periodic disturbances of finite amplitude in the vicinity of the neutral curve, J. Fluid Mech., 29, 31-38 (1967) · Zbl 0158.44902
[17] Segel, L. A., Distant side-walls cause slow amplitude modulation of cellular convection, J. Fluid Mech., 38, 203-224 (1969) · Zbl 0179.57501
[18] P.K. Sen and T.K. Vashist, Indian Inst. of Technology, New Delhi (1986), private communication.; P.K. Sen and T.K. Vashist, Indian Inst. of Technology, New Delhi (1986), private communication.
[19] Stewartson, K.; Stuart, J. T., A non-linear instability theory for a wave system in plane Poiseuille flow, J. Fluid Mech., 48, 529-546 (1971) · Zbl 0222.76045
[20] Stuart, J. T., On the non-linear mechanics of wave disturbances in stable and unstable parallel flows, J. Fluid Mech., 9, 353-370 (1960), Part 1 · Zbl 0096.21102
[21] Stuart, J. T.; DiPrima, R. C., The Eckhaus and Benjamin-Feir resonance mechanisms, (Proc. R. Soc. London A, 362 (1978)), 27-41
[22] Veronis, G., Cellular convection with finite amplitude in a rotating fluid, J. Fluid Mech., 5, 401-435 (1959) · Zbl 0086.40701
[23] Watson, J., On the non-linear mechanics of wave disturbances in stable and unstable parallel flows, J. Fluid Mech., 9, 371-389 (1960), Part 2 · Zbl 0096.21103
[24] Weinstein, M., Non-linear instability in plane Poiseuille flow, Proc. R. Soc. London A, 375, 155-167 (1981) · Zbl 0454.76046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.