×

Convolutions and products of partially ordered vector-valued positive measures. (English) Zbl 0677.46029

Let X, Y, Z be monotone complete partially ordered vector spaces. The main objective of this paper is to further investigate properties of partially ordered vector-valued positive measures using previous results of J. D. M. Wright [cf. Proc. London Math. Soc., III. Ser. 19, 107- 122 (1969; Zbl 0186.465); ibid. 25, 675-688 (1972; Zbl 0243.46049), Math. Z. 120, 193-203 (1971; Zbl 0208.157), Quart. J. Math., II. Ser. 24, 189-206 (1973; Zbl 0255.28011), J. London Math. Soc., II. Ser. 8, 699-706 (1974; Zbl 0289.46007)] and results (some of them still unpublished) concerning an order preserving bilinear integration process established by P. K. Pavlakos [cf. Can. J. Math., II. Ser. 35, 353- 372 (1983; Zbl 0487.28010)].
The derived integral has the form \(\int_{T}f(t)dm(t)\), where the integrable function f (resp. positive measure m) is defined on T (resp. on a \(\sigma\)-algebra of subsets of T) and takes values in X (resp. Y).
The integral takes values in the cut completion \(\hat V\) of \(V:=Z^+- Z^+\) via a positive bilinear order separately continuous function from \(X\times Y\) into Z.
We investigate notions of convolution of two positive quasi-regular measures defined on the Borel \(\sigma\)-algebra of a locally compact Hausdorff topological semigroup G and taking values in X, Y respectively.
For this purpose assuming moreover that X is a partially ordered orderunit-normed space we state and prove a Fubini-type theorem. The obtained results can be immediately applied in \(C^*\)-algebras (especially in \(W^*\)-algebras or \(AW^*\)-algebras of type I), in Jordan algebras, in partially ordered *-involutory \((0^*\)-) algebras, in semifields as well as in mathematical foundation of quantum probability theory.
Reviewer: P.K.Pavlakos

MSC:

46G10 Vector-valued measures and integration
28B05 Vector-valued set functions, measures and integrals
46A40 Ordered topological linear spaces, vector lattices
44A35 Convolution as an integral transform

References:

[1] Berberian, S.K.: Notes on spectral theory. Princeton: Van Nostrand 1966 · Zbl 0138.39104
[2] Bourbaki, N.: Integration. Chaps. I?VI. Actual. Sci. Ind. 1175, 1244, 1281. Paris: Hermann 1952, 1956, 1959
[3] Cattaneo, U.: On Mackey’s imprimitivity theorem. Comment. Math. Helv.54, 629-641 (1979) · Zbl 0425.22010 · doi:10.1007/BF02566297
[4] Davies, E.B., Lewis, J.T.: An operational approach to quantum probability. Commun. Math. Phys.17, 239-260 (1970) · Zbl 0194.58304 · doi:10.1007/BF01647093
[5] Davies, E.B.: On the repeated measurement of continuous observables in quantum mechanics. J. Funct. Anal.6, 318-346 (1970) · Zbl 0198.59901 · doi:10.1016/0022-1236(70)90064-9
[6] Dinculeanu, N.: Vector measures. New York: Pergamon Press 1967 · Zbl 0156.14902
[7] Edwards, C.M.: The operational approach to algebraic quantum theory 1. Commun. Math. Phys.16, 207-230 (1970) · Zbl 0187.25601 · doi:10.1007/BF01646788
[8] Edwards, C.M.: Classes of operations in quantum theory. Commun. Math. Phys.20, 26-56 (1971) · Zbl 0203.57001 · doi:10.1007/BF01646732
[9] Halmos, P.: Introduction to Hilbert space and the theory of spectral multiplicity. New York: Chelsea 1957 · Zbl 0079.12404
[10] Hartkamper, A., Neumann, H. (ed.): Foundations of quantum mechanics and ordered linear spaces. (Lect. Notes in Phys., vol. 29). Berlin Heidelberg New York: Springer 1974
[11] Hewitt, E., Ross, K.A.: Abstract harmonic analysis, I. Berlin Heidelberg New York: Springer 1963 · Zbl 0115.10603
[12] Kappos, D.A.: Probability algebras and stochastic spaces. New York London: Academic Press 1969 · Zbl 0196.18501
[13] Namioka, I.: Partially ordered linear topological spaces. Mem. Am. Math. Soc.24 (1957) · Zbl 0105.08901
[14] Pavlakos, P.K.: On integration in partially ordered groups. Can. J. Math.35, 353-372 (1983) · doi:10.4153/CJM-1983-020-3
[15] Pavlakos, P.K.: Integral representation theorems in partially ordered vector spaces. Preprint · Zbl 0753.28010
[16] Peressini, A.: Ordered topological vector spaces. New York London: Harper and Row 1967 · Zbl 0169.14801
[17] Schaefer, H.H.: Topological vector spaces. New York: Macmillan 1966 · Zbl 0141.30503
[18] Stromberg, K.: A note on the convolution of regular measures. Math. Scand.7 347-352 (1959) · Zbl 0094.30403
[19] Vulikh, B.Z.: Introduction to the theory of partially ordered spaces. Moskow: Fizmatgiz, 1961. Engl. transl., Groningen: Noordhoff 1967 · Zbl 0186.44601
[20] Wright, J.D.M.: Stone-algebra-valued measures and integrals. Proc. Lond. Math. Soc.19, 107-122 (1969) · Zbl 0186.46504 · doi:10.1112/plms/s3-19.1.107
[21] Wright, J.D.M.: Vector-lattice measures on locally compact spaces. Math. Z.120, 193-203 (1971) · doi:10.1007/BF01117493
[22] Wright, J.D.M.: Measures with values in a partially ordered vector space. Proc. Lond. Math. Soc.25, 655-688 (1972) · Zbl 0243.46049 · doi:10.1112/plms/s3-25.4.675
[23] Wright, J.D.M.: Products of positive vector measures. Q. J. Math.24 (2), 189-206 (1973) · Zbl 0255.28011 · doi:10.1093/qmath/24.1.189
[24] Wright, J.D.M.: Embeddings, in vector lattices. J. Lond. Math. Soc.8 (2), 699-706 (1974) · Zbl 0289.46007 · doi:10.1112/jlms/s2-8.4.699
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.