×

Eta invariants of Dirac operators on locally symmetric manifolds. (English) Zbl 0672.58043

The eta-invariant of a self-adjoint elliptic differential operator on a compact manifold X was introduced by Atiyah, Patodi and Singer in connection with the index theorem for manifolds with boundary. It is a spectral invariant which measures the asymmetry of the spectrum of such an operator A. (Formally, \(\eta\) (A) is equal to the number of positive eigenvalues of A minus the number of negative eigenvalues). \(\eta\)- invariants of Dirac operators are closely related to several important invariants from differential topology.
For X a compact oriented (4n-1)-dimensional Riemannian manifold of constant negative curvature, J. J. Millson [Ann. Math., II. Ser. 108, 1-39 (1978; Zbl 0399.58020)] has proved a remarkable formula relating \(\eta_ X\) to the closed geodesics on X, where \(\eta_ X=\eta (B)\), B is tangential signature operator, acting on the even forms of X. The appropriate class of Riemannian manifolds for which a result of this type can be expected is that of non-positively curved locally symmetric manifolds, while the class of self adjoint operators whose \(\eta\)- invariants are interesting to compute is that of Dirac-type operators, eventually with additional coefficients in locally flat bundles. It is the purpose of this paper to formulate and prove such an extension of Millson’s formula.
Reviewer: V.Deundjak

MSC:

58J20 Index theory and related fixed-point theorems on manifolds
58J70 Invariance and symmetry properties for PDEs on manifolds

Citations:

Zbl 0399.58020

References:

[1] [A-P-S] Atiyah, M., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry I. Proc. Camb. Phil. Soc.77, 43-69 (1975); II. loc. cit.78, 405-432 (1975); III. loc. cit.79, 71-99 (1975) · Zbl 0297.58008 · doi:10.1017/S0305004100049410
[2] [A-S III] Atiyah, M., Singer, I.M.: The index of elliptic operators: III. Ann. Math.87, 546-604 (1968) · Zbl 0164.24301 · doi:10.2307/1970717
[3] [A-Sc] Atiyah, M., Schmid, W.: A geometric construction of the discrete series for semisimple Lie groups. Invent. Math.42, 1-62 (1977) · Zbl 0373.22001 · doi:10.1007/BF01389783
[4] [B] Borel, A.: Compact Clifford-Klein forms of symmetric spaces. Topology2, 111-122 (1963) · Zbl 0116.38603 · doi:10.1016/0040-9383(63)90026-0
[5] [B-F] Bismut, J-M., Freed, D.S.: The analysis of elliptic families, II. Commun. Math. Phys.107, 103-163 (1986) · Zbl 0657.58038 · doi:10.1007/BF01206955
[6] [B-M] Barbasch, D., Moscovici, H.:L 2-index and the Selberg trace formula. J. Funct. Anal.53, 151-201 (1983) · Zbl 0537.58039 · doi:10.1016/0022-1236(83)90050-2
[7] [B-W] Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Ann. Math. Stud.94, 1-387 (1980) · Zbl 0443.22010
[8] [D] Donnelly, H.: Asymptotic expansions for the compact quotients of properly discontinuous group actions. Ill. J. Math.23, 485-496 (1979) · Zbl 0411.53033
[9] [D2] Donnelly, H.: spectral geometry and invariants from differential topology. Bull. London Math. Soc.7, 147-150 (1975) · Zbl 0306.58019 · doi:10.1112/blms/7.2.147
[10] [D-K-V] Duistermaat, J.J., Kolk, J.A.C., Varadarajan, V.S.: Spectra of compact locally symmetric manifolds of negative curvature. Invent. Math.52, 27-93 (1979) · Zbl 0434.58019 · doi:10.1007/BF01389856
[11] [Hb] Herb, R.: Fourier inversion of invariant integrals on semisimple real Lie groups. Trans. Am. Math. Soc.249, 281-302 (1979) · Zbl 0419.22015
[12] [He] Helgason, S.: Differential geometry. Lie Groups and Symmetric Spaces. New York: Acad. Press 1978 · Zbl 0451.53038
[13] [Hi] Hirai, T.: A note on automorphisms of real semisimple Lie algebras. J. Math. Soc. Jap.28, 250-256 (1976) · Zbl 0318.17007 · doi:10.2969/jmsj/02820250
[14] [H-C] Harish-Chandra. [I] Harmonic Analysis on real reductive groups, I. J. Funct. Anal.19, 104-204 (1975) · Zbl 0315.43002 · doi:10.1016/0022-1236(75)90034-8
[15] . [III] Harmonic analysis on real reductive groups, III. The Maass-Selberg relations and the Plancherel formula. Ann. Math.104, 117-201 (1976) · Zbl 0331.22007 · doi:10.2307/1971058
[16] . [DS II] Discrete series for semisimple Lie groups, II. Acta Math.116, 1-111 (1966) · Zbl 0199.20102 · doi:10.1007/BF02392813
[17] . [S] Supertempered distributions on real reductive groups. Stud. Appl. Math. Adv. Math. (Suppl.)8, 139-153 (1983) · Zbl 0512.22005
[18] [H-P] Hotta, R., Parthasarathy, R.: A geometric meaning of the multiplicity of integrable discrete classes inL 2 (?/G). Osaka J. Math.10, 211-234 (1973) · Zbl 0337.22016
[19] [H-S] Herb, R., Sally, P.: Singular invariant eigendistributions as characters in the Fourier transform of invariant distributions. J. Funct. Anal.33, 195-210 (1979) · Zbl 0417.22011 · doi:10.1016/0022-1236(79)90111-3
[20] [K] Klingenberg, W.: Lecture on closed geodesics. (Grundlehren der mathematischen Wissenschaften, Vol. 230). Berlin-Heidelberg-New York: Springer 1978
[21] [K-S] Kreck, M., Stolz, S.: A diffeomorphism classification of 7-dimensional homogeneous Einstein manifolds withSU(3){\(\times\)}SU(2){\(\times\)}U(1) symmetry. Ann. Math.127, 373-388 (1988) · Zbl 0649.53029 · doi:10.2307/2007059
[22] [La] Langlands, R.P.: The dimension of spaces of automorphic forms. Ann. J. Math.895, 99-125 (1963) · Zbl 0113.25802
[23] [L-M] Lawson, H.B., Michelsohn, M.L.: Spin geometry. Universidade Federal do Ceara, 1983 · Zbl 0688.57001
[24] [M] Millson, J.J.: Closed geodesics and the eta-invariant. Ann. Math.108, 1-39 (1978) · Zbl 0399.58020 · doi:10.2307/1970928
[25] [Mo] Moscovici, H.: Lefschetz formulae for Hecke operators. Lie group representations III. (Lecture Notes in Mathematics, Vol. 1077). Berlin-Heidelberg-New York: Springer 1984 · Zbl 0561.58046
[26] [Ms] Mostow, G.D.: Intersections of discrete groups with Cartan subgroups. J. Ind. Math. Soc.34, 203-214 (1970) · Zbl 0235.22019
[27] [R-S] Ray, D.B., Singer, I.M.: 666-1 and the Laplacian on Riemannian manifolds. Adv. Math.7, 145-210 (1971) · Zbl 0239.58014 · doi:10.1016/0001-8708(71)90045-4
[28] [S] Singer, I.M.: Eigenvalues of the Laplacian and invariants of manifolds. Proc. ICM. Vancouver, B.C. 187-200 (1974)
[29] [Sc] Schmid, W.: On a conjecture of Langlands. Ann. Math.93, 1-42 (1971) · Zbl 0291.43013 · doi:10.2307/1970751
[30] [W] Wolf, J.A.: Discrete groups, symmetric spaces and global holonomy. Am. J. Math.84, 527-542 (1962) · Zbl 0116.38602 · doi:10.2307/2372860
[31] [Wi] Witten, E.: Global gravitational anomalies. Commun. Math. Physics100, 197-229 (1985) · Zbl 0581.58038 · doi:10.1007/BF01212448
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.