×

A unified approach to persistence. (English) Zbl 0669.92020

The author defines the concept of permanence for dynamical systems of the type that might arise from models of ecological systems. He quotes a “geometric” sufficient condition for permanence in Lotka-Volterra systems and uses modern dynamical system theory to give a new proof. Along the way, he works out some interesting results about the asymptotic behaviour of time averages for solutions of Lotka-Volterra equations. As an example, a two-prey two-predator Lotka-Volterra system is analyzed.
Reviewer: A.Hausrath

MSC:

92D40 Ecology
34D20 Stability of solutions to ordinary differential equations
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
Full Text: DOI

References:

[1] N. P. Bhatia and G. P. Szeg?:Stability Theory of Dynamical Systems. Grundlehren math. Wissensch. 161. Berlin-Heidelberg-New York: Springer. 1970.
[2] R. Bowen: ?-limit sets for Axiom A diffeomorphisms, J. Diff. Equ.18, 333-339 (1975). · Zbl 0315.58019 · doi:10.1016/0022-0396(75)90065-0
[3] G. Butler, H. I. Freedman and P. Waltman: Uniformly persistent systems. Proc. Amer. Math. Soc.96, 425-430 (1986). · Zbl 0603.34043 · doi:10.1090/S0002-9939-1986-0822433-4
[4] G. Butler, P. Waltman: Persistence in dynamical systems. J. Diff. Equ.63, 255-263 (1986). · Zbl 0603.58033 · doi:10.1016/0022-0396(86)90049-5
[5] C. Conley:Isolated invariant sets and the Morse index. CBMS 38. Providence, R.I.: Amer. Math. Soc. 1978. · Zbl 0397.34056
[6] A. Fonda: Uniformly persistent semi-dynamical systems. Proc. Amer. Math. Soc. To appear. · Zbl 0667.34065
[7] H. I. Freedman and J. W.-H. So: Persistence in discrete semi-dynamical systems. Preprint (1987).
[8] H. I. Freedman and P. Waltman: Mathematical analysis of some three-species food-chain models. Math. Biosci.33, 257-276 (1977). · Zbl 0363.92022 · doi:10.1016/0025-5564(77)90142-0
[9] T. C. Gard and T. G. Hallam: Persistence of food webs: I. Lotka-Volterra food chains. Bull. Math. Biol.41, 877-891 (1979). · Zbl 0422.92017
[10] B. M. Garay: Uniform persistence and chain recurrence. J. Math. Anal. Appl. To appear. · Zbl 0677.54033
[11] J. Hofbauer: A general cooperation theorem for hypercycles. Monatsh. Math.91: 233-240 (1981). · Zbl 0449.34039 · doi:10.1007/BF01301790
[12] J. Hofbauer: Heteroclinic cycles on the simplex. Proc. Int. Conf. Nonlinear Oscillations. Budapest 1987. · Zbl 0653.34024
[13] J. Hofbauer and K. Sigmund: Permanence for replicator equations. In:Dynamical Systems. Ed. A. B. Kurzhansky and K. Sigmund. Springer Lect. Notes Econ. Math. Systems287. 1987. · Zbl 0638.92012
[14] J. Hofbauer and K. Sigmund:Dynamical Systems and the Theory of Evolution. Cambridge Univ. Press 1988. · Zbl 0678.92010
[15] V. Hutson: A theorem on average Ljapunov functions. Monatsh. Math.98, 267-275 (1984). · Zbl 0542.34043 · doi:10.1007/BF01540776
[16] W. Jansen: A permanence theorem for replicator and Lotka-Volterra systems. J. Math. Biol.25, 411-422 (1987). · Zbl 0647.92021 · doi:10.1007/BF00277165
[17] G. Kirlinger:Permanence of some four-species Lotka-Volterra systems. Dissertation. Universit?t Wien. 1987.
[18] C. Robinson: Stability theorems and hyperbolicity in dynamical systems. Rocky Mountain J. Math.7, 425-434 (1977). · Zbl 0375.58016 · doi:10.1216/RMJ-1977-7-3-425
[19] P. Schuster, K. Sigmund and R. Wolff: Dynamical systems under constant organization. III. Cooperative and competitive behaviour of hypercycles. J. Diff. Equ.32, 357-368 (1979). · doi:10.1016/0022-0396(79)90039-1
[20] T. Ura and I. Kimura: Sur le courant exterieur a une region invariante. Theoreme de Bendixson. Comm. Math. Univ. Sanctii Pauli8, 23-39 (1960).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.