×

Constrained Poisson algebras and strong homotopy representations. (English) Zbl 0669.18009

Let A be a Poisson algebra, i.e., an abelian associative algebra equipped with an additional multiplication (f,g)\(\to \{f,g\}\) (the Poisson bracket \(\{\), \(\})\) which is anticommutative and acts as a derivation with respect to the abelian product: \(\{g,gh\}=\{f,g\}h+f\{g,h\}.\)
The author justifies, in terms of the algebra A, the method developed by E. S. Fradkin, I. A. Batalin, G. A. Vilkoviskij, and M. Henneaux for computing the ad I-invariant functions in A/I without going through the quotient, where I is the ideal generated by the constraints of A with respect to the abelian multiplication, supposed closed under Poisson bracket. He uses techniques of homological perturbation theory [V. K. A. M. Gugenheim and J. P. May, Mem. Am. Math. Soc. 142, 94 p. (1974; Zbl 0292.55019); V. K. A. M. Gugenheim, J. Pure Appl. Algebra 25, 197-205 (1982; Zbl 0487.55003); V. K. A. M. Gugenheim and J. D. Stasheff, Bull. Soc. Math. Belg., Ser. A 38, 237-246 1986; Zbl 0639.55008)].
Reviewer: U.Cattaneo

MSC:

18G10 Resolutions; derived functors (category-theoretic aspects)
17B55 Homological methods in Lie (super)algebras
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
81T08 Constructive quantum field theory
Full Text: DOI

References:

[1] I. A. Batalin and E. S. Fradkin, A generalized canonical formalism and quantization of reducible gauge theories, Phys. Lett. B 122 (1983), no. 2, 157 – 164. · Zbl 0967.81508 · doi:10.1016/0370-2693(83)90784-0
[2] I. A. Batalin and G. A. Vilkovisky, Existence theorem for gauge algebra, J. Math. Phys. 26 (1985), no. 1, 172 – 184. · doi:10.1063/1.526780
[3] I. A. Batalin and G. A. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D (3) 28 (1983), no. 10, 2567 – 2582. , https://doi.org/10.1103/PhysRevD.28.2567 I. A. Batalin and G. A. Vilkovisky, Erratum: ”Quantization of gauge theories with linearly dependent generators”, Phys. Rev. D (3) 30 (1984), no. 2, 508. · doi:10.1103/PhysRevD.30.508
[4] I. A. Batalin and G. S. Vilkovisky, Relativistic S-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. 69B (1977), 309-312.
[5] A. D. Browning and David McMullan, The Batalin, Fradkin, and Vilkovisky formalism for higher-order theories, J. Math. Phys. 28 (1987), no. 2, 438 – 444. · Zbl 0625.58034 · doi:10.1063/1.527679
[6] Claude Chevalley and Samuel Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85 – 124. · Zbl 0031.24803
[7] E. S. Fradkin and G. A. Vilkovisky, Quantization of relativistic systems with constraints, Phys. Lett. B 55 (1975), no. 2, 224 – 226. · Zbl 0967.81532 · doi:10.1016/0370-2693(75)90448-7
[8] V. K. A. M. Gugenheim, On a perturbation theory for the homology of the loop-space, J. Pure Appl. Algebra 25 (1982), no. 2, 197 – 205. · Zbl 0487.55003 · doi:10.1016/0022-4049(82)90036-6
[9] V. K. A. M. Gugenheim and J. Peter May, On the theory and applications of differential torsion products, American Mathematical Society, Providence, R.I., 1974. Memoirs of the American Mathematical Society, No. 142. · Zbl 0292.55019
[10] V. K. A. M. Gugenheim and J. D. Stasheff, On perturbations and \?_{\infty }-structures, Bull. Soc. Math. Belg. Sér. A 38 (1986), 237 – 246 (1987). · Zbl 0639.55008
[11] Marc Henneaux, Hamiltonian form of the path integral for theories with a gauge freedom, Phys. Rep. 126 (1985), no. 1, 1 – 66. · doi:10.1016/0370-1573(85)90103-6
[12] M. Henneaux and J. Stasheff, BRST formalism for reducible theories (preprint).
[13] George S. Rinehart, Differential forms on general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195 – 222. · Zbl 0113.26204
[14] Tadeusz Józefiak, Tate resolutions for commutative graded algebras over a local ring, Fund. Math. 74 (1972), no. 3, 209 – 231. · Zbl 0236.13012
[15] John Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14 – 27. · Zbl 0079.05501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.