×

Homoclinic and heteroclinic bifurcations of vector fields. (English) Zbl 0668.34039

The author studies a bifurcation of homoclinic and heteroclinic orbits in a k-parameter family of \((m+n)\)-dimensional ODES: \(\dot x=f(x)+g(x,\mu)\), \(x\in {\mathbb{R}}^{m+n}\), \(\mu \in {\mathbb{R}}^ k\) (k\(\geq 2)\), where f and g are smooth and \(g(x,0)=0\). Suppose that the system has three saddle equilibria \(0_ i(\mu)\), \(i=1,2,3\), and the unperturbed system \(\dot x=f(x)\) has a heteroclinic orbit connecting \(0_ 1(0)\) and \(0_ 2(0)\) (i.e. an \((0_ 1,0_ 2)\)-connection) and an \((0_ 2,0_ 3)\)- connection simultaneously. Under some assumptions on the eigenvalues of the linearized equation at equilibrium points and on a non-degeneracy condition for the system the author shows that heteroclinic orbits of new type appear besides the persistent ones of the unperturbed system. A bifurcation diagram is given for such families. Some homoclinic bifurcations are also treated including that one producing a twice- rounding homoclinic orbit. This paper is organized as follows: In § 1, the author gives a precise statement of the problem and the main results. He explains the notion of exponential dichotomy in § 2, and using it, he first studies the persistency condition of heteroclinic orbits in § 3. In § 4 he briefly states a lemma, which gives a property of trajectories near a saddle equilibrium. The main theorems are proved in § 5-6 for the cases of non-critical eigenvalues and of critical eigenvalues. The bifurcation diagrams are treated in § 7 as well as a simple example of a two-dimensional system. § 8 is devoted to a study of the bifurcation of the doubling of a homoclinic orbit. Finally, the author makes some concluding remarks in § 9, especially on several related works.
Reviewer: Chungyou He

MSC:

34C25 Periodic solutions to ordinary differential equations
Full Text: DOI

References:

[1] G. R. Belitskii, Functional equations and conjugacy of local diffeomorphism of a finite smoothness class. Functional Anal. Appl.7 (1973), 268–277. · Zbl 0293.39005 · doi:10.1007/BF01075731
[2] H. Berestycki, B. Nicolaenko and B. Scheurer, Travelling wave solutions to reaction-diffusion systems modeling combustion. Nonlinear Partial Differential Equations, Contemporary Mathematics Vol. 17, AMS, Providence, 1983, 189–208. · Zbl 0573.35042
[3] J. Carr. Applications of Centre Manifold Theory. Appl. Math. Sci., Vol. 35, Springer, 1981. · Zbl 0464.58001
[4] J. Carr, S.-N. Chow and J. K. Hale, Abelian integrals and bifurcation theory. J. Differential Equations,59 (19850, 413–436. · Zbl 0587.34033 · doi:10.1016/0022-0396(85)90148-2
[5] S.-N. Chow, B. Deng and D. Terman, The bifurcation of a homoclinic orbit from two heteroclinic orbits–a topological approach–. Preprint. · Zbl 0758.35043
[6] S.-N. Chow, B. Deng and D. Terman, The bifurcation of a homoclinic and periodic orbit from two heteroclinic orbits– an analytical approach–. Preprint. · Zbl 0693.34055
[7] S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory. Springer, 1982. · Zbl 0487.47039
[8] E. A. Coddington and L. Levinson, Theory of Ordinary Differential Equations. McGraw-Hill, New York, 1955. · Zbl 0064.33002
[9] W. A. Coppel, Dichotomies in Stability Theory. Lecture Notes in Math.,629, Springer, 1978. · Zbl 0376.34001
[10] P. Coullet, J.-M. Gambaudo et C. Tresser, Une bifurcation de codimension 2: le collages de cycles. C. R. Acad. Sci. Paris,299 (1984), 253–256. · Zbl 0582.58026
[11] J.-M. Gambaudo, P. Glendinning et C. Tresser, Collages de cycles et suites de Farey. C. R. Acad. Sci. Paris,299 (1984), 711–714. · Zbl 0591.58023
[12] P. Gaspard, Generation of a countable set of homoclinic flows through bifurcation. Phys. Lett.,97A (1983), 1–4. · doi:10.1016/0375-9601(83)90085-3
[13] S. A. van Gils, A note on ”Abelian integrals and bifurcation theory.” J. Differential Equations,59 (1985), 437–441 · Zbl 0642.34023 · doi:10.1016/0022-0396(85)90149-4
[14] P. Glendinning, Bifurcations near homoclinic orbits with symmetry. Phys. Lett.,103A (1984), 163–166. · doi:10.1016/0375-9601(84)90242-1
[15] P. Glendinning and C. Sparrow, Local and global behavior near homoclinic orbits. J. Statist. Phys.,35 (1984), 645–696. · Zbl 0588.58041 · doi:10.1007/BF01010828
[16] P. Glendinning and C. Sparrow, T-points: A codimension two heteroclinic bifurcation. J. Statist. Phys.,43 (1986), 479–488. · Zbl 0635.58031 · doi:10.1007/BF01020649
[17] J. Gruendler, The existence of homoclinic orbits and the method of Melnikov for systems inR n . SIAM J. Math. Anal.,16 (1985), 907–931. · Zbl 0601.70017 · doi:10.1137/0516069
[18] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Appl. Math. Sci. Vol. 42, Springer, 1983, 2nd printing, 1986. · Zbl 0515.34001
[19] H. Ikeda, M. Mimura and T. Tsujikawa, Singular perturbation approach to traveling wave solutions of the Hodgkin-Huxley equations and its application to stability problems. To appear in Japan J. Appl. Math. · Zbl 0678.92007
[20] H. Kokubu, On a codimension 2 bifurcation of heteroclinic orbits. Proc. Japan Acad.,63, Ser. A (1987), 298–301. · Zbl 0664.34050 · doi:10.3792/pjaa.63.298
[21] E. N. Lorenz, Deterministic nonperiodic flow. J. Atom. Sci.20 (1963), 130–141. · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[22] V. K. Melnikov, On the stability of the center for time periodic perturbations. Trans. Moscow Math. Soc.,12 (1963), 1–57.
[23] K. J. Palmer, Exponential dichotomies and transversal homoclinic points. J. Differential Equations,55 (1984), 225–256. · Zbl 0508.58035 · doi:10.1016/0022-0396(84)90082-2
[24] J. Rinzel and D. Terman, Propagation phenomena in a bistable reaction-diffusion system. SIAM J. Appl. Math.,42 (1982), 1111–1137. · Zbl 0522.92004 · doi:10.1137/0142077
[25] J. A. Rodriguez, Bifurcations to homoclinic connections of the focus-saddle type. Arch. Rational Anal. Mech.,93 (1985), 81–90. · Zbl 0594.34068 · doi:10.1007/BF00250846
[26] S. Schecter, The saddle-node separatrix-loop bifurcation. SIAM J. Math. Anal.,18 (1987), 1142–1156. · Zbl 0651.58025 · doi:10.1137/0518083
[27] L. P. Shil’nikov, On a Poincaré-Birkhoff problem. Math. USSR-Sb.,3 (1967), 353–371. · Zbl 0244.34033 · doi:10.1070/SM1967v003n03ABEH002748
[28] L. P. Shil’nikov, On the generation of periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle type. Math. USSR-Sb.,6 (1968), 427–438. · Zbl 0188.15303 · doi:10.1070/SM1968v006n03ABEH001069
[29] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Atrractors. Appl. Math. Sci. Vol. 41, Springer, 1982. · Zbl 0504.58001
[30] C. Tresser, About some theorems by L. P. Shil’nikov. Ann. Inst. H. Poincaré,40 (1984), 441–461. · Zbl 0556.58025
[31] E. Yanagida, Branching of double pulse solutions from single pulse solutions in nerve axon equations. J. Differential Equations,66 (1987), 243–262. · Zbl 0661.35003 · doi:10.1016/0022-0396(87)90034-9
[32] H. \.Zolądek, Bifurcations of certain family of planar vector fields tangent to axes. J. Differential Equations,67 (1987), 1–55. · Zbl 0648.34068 · doi:10.1016/0022-0396(87)90138-0
[33] B. Deng, Shil’nikov problem, exponential expansion, strong {\(\lambda\)}-lemma,C 1-linearization and homoclinic bifurcation. To appear in J. Differential Equations. · Zbl 0674.34040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.