×

The extrapolated Gauss-Seidel methods and generally consistently ordered matrices. (English) Zbl 0665.65027

To solve \(Ax=b\), an iterative method \(x^{k+1}={\mathcal L}_{t,\omega}x^k+c\) may be defined using \[ {\mathcal L}_{t,\omega}=(I-\omega L)^{-1}[(1- t)I+(t-\omega)L+tU]. \] The asymptotic rate of convergence may be measured as \(R_{\infty}(X)=-\log (\rho (X))\) where \(\rho(x)\) is the spectral radius of matrix \(X\). Let \(B={\mathcal L}_{1,\infty}\), \(G={\mathcal L}_{1,1}\) and \(S={\mathcal L}_{\omega,\omega}\) be the Jacobi, Gauss-Seidel and SOR iteration matrices. The authors show that for an optimal choice of \(t\)
\[ \lim_{\rho (B)\to 1}-R_{\infty}({\mathcal L}_{t,1})/R_{\infty}(G)=2, \] and for an optimal choice of \(\omega\), \[ \lim_{\rho (B)\to 1}-R_{\infty}({\mathcal L}_{1,\omega})/[R_{\infty}(G)]^{1/2}=(2(p-1)/p)^{1/2}. \]
As the authors state, only the latter converges nearly as fast as the SOR method (when \(p\) is large) for which R. S. Varga [Matrix iterative analysis. Englewood Cliffs, New Jersey: Prentice-Hall (1963; Zbl 0133.08602)] has shown that \[ \lim_{\rho (B)\to 1}- R_{\infty}(S)/[R_{\infty}(G)]^{1/2}=(2p/(p-1))^{1/2}. \] The proofs utilize the concept of generally consistently ordered matrices. The final remark of the paper appears to refer to further work of the first two authors [The extrapolated Gauss-Seidel method plus semi-iterative method for generally consistently ordered matrices. Int. J. Comput. Math. 25, No. 1, 55–66 (1988; Zbl 0663.65027)].

MSC:

65F10 Iterative numerical methods for linear systems
Full Text: DOI

References:

[1] DOI: 10.1137/0718037 · Zbl 0464.65018 · doi:10.1137/0718037
[2] DOI: 10.1090/S0002-9947-1954-0059635-7 · doi:10.1090/S0002-9947-1954-0059635-7
[3] DOI: 10.1007/BF01386075 · Zbl 0244.65021 · doi:10.1007/BF01386075
[4] DOI: 10.1007/BF02170996 · Zbl 0181.17204 · doi:10.1007/BF02170996
[5] Varga R. S., Pacific J. Math. 9 pp 617– (1959)
[6] Varga R. S., Matrix iterative analysis (1962) · Zbl 0133.08602
[7] DOI: 10.1007/BF02163270 · Zbl 0172.42502 · doi:10.1007/BF02163270
[8] DOI: 10.1007/BF02162914 · Zbl 0172.18802 · doi:10.1007/BF02162914
[9] Erxiong Jiang, Linear Algebra (1979)
[10] Computational Method 1 (1975)
[11] Young David M., Iterative Solution of Large Linear Systems (1971) · Zbl 0231.65034
[12] Missirlis M. N., Sparsity and its Applications pp 113–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.