×

On pole assignability and feedback cyclisation for systems over rings of finite dimension. (English) Zbl 0663.93034

It is shown that the rank of the projective added to the state space of a system in dynamic feedback can be decreased by assigning some poles to the original system first and by using these to obtain a new system with state space of lower rank on which dynamic feedback can be applied.

MSC:

93B55 Pole and zero placement problems
13C10 Projective and free modules and ideals in commutative rings
93C05 Linear systems in control theory
93B25 Algebraic methods
Full Text: DOI

References:

[1] Brewer J. W., Linear systems over commutative rings. (1986) · Zbl 0607.13001
[2] DOI: 10.1016/0021-8693(85)90058-4 · Zbl 0574.13011 · doi:10.1016/0021-8693(85)90058-4
[3] DOI: 10.1016/0021-8693(87)90031-7 · Zbl 0611.13016 · doi:10.1016/0021-8693(87)90031-7
[4] DOI: 10.1016/0022-4049(87)90103-4 · Zbl 0653.13008 · doi:10.1016/0022-4049(87)90103-4
[5] Brewer J., Dynamic feedback over commutative rings · Zbl 0663.93020
[6] DOI: 10.1080/00927878408823140 · Zbl 0571.13004 · doi:10.1080/00927878408823140
[7] DOI: 10.1016/0022-4049(81)90087-6 · Zbl 0455.15009 · doi:10.1016/0022-4049(81)90087-6
[8] DOI: 10.1016/0167-6911(82)90006-8 · Zbl 0519.93033 · doi:10.1016/0167-6911(82)90006-8
[9] DOI: 10.1016/0021-8693(73)90106-3 · Zbl 0286.13012 · doi:10.1016/0021-8693(73)90106-3
[10] DOI: 10.1016/0022-4049(80)90030-4 · Zbl 0428.13003 · doi:10.1016/0022-4049(80)90030-4
[11] Goldman O., Nagoya Math. J. 18 pp 27– (1961) · Zbl 0103.27001 · doi:10.1017/S002776300000221X
[12] DOI: 10.1016/0022-4049(86)90043-5 · Zbl 0665.93018 · doi:10.1016/0022-4049(86)90043-5
[13] DOI: 10.1307/mmj/1029003021 · Zbl 0589.13010 · doi:10.1307/mmj/1029003021
[14] Kunz E., Introduction to commutative algebra ad algebraic geometry. (1985) · Zbl 0563.13001
[15] McDonald B. R., Linear algebra over commuative rings. (1984)
[16] DOI: 10.1016/0022-4049(88)90089-8 · Zbl 0659.13003 · doi:10.1016/0022-4049(88)90089-8
[17] DOI: 10.1016/0167-6911(85)90007-6 · Zbl 0565.93029 · doi:10.1016/0167-6911(85)90007-6
[18] DOI: 10.1016/0167-6911(84)90008-2 · Zbl 0574.13012 · doi:10.1016/0167-6911(84)90008-2
[19] DOI: 10.1016/0167-6911(86)90127-1 · Zbl 0575.93033 · doi:10.1016/0167-6911(86)90127-1
[20] DOI: 10.1016/0167-6911(82)90005-6 · Zbl 0505.93027 · doi:10.1016/0167-6911(82)90005-6
[21] Tannenbaum A., Mathematical theory of networks and systems. Proc. Internat. Sympos. pp 829– (1983) · Zbl 0507.93022
[22] Vasconcelos W. B., J. Pure Appl. Algebra.
[23] Wiegand R., Pacific J. Math. 58 pp 655– (1975) · Zbl 0273.13007 · doi:10.2140/pjm.1975.58.655
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.