×

Quantum inverse scattering method for a nonlinear N-wave resonance interaction system. (English) Zbl 0663.47010

The quantum inverse scattering method is used for the study of a nonlinear N-wave resonance interaction system. The Yang-Baxter relations are solved to get various commutation relations for the scattering data operators. The energy spectrum of the quantum Hamiltonian for the model is determined and the existence of the quantum bound states is analyzed. In the classical limit, the corresponding r matrix is found, and the well-established correspondence between the classical solitons and the quantum bound states is examined. Finally, the integrability of the same model but with both fermion fields and boson fields is discussed.

MSC:

47A40 Scattering theory of linear operators
46N99 Miscellaneous applications of functional analysis
81U10 \(n\)-body potential quantum scattering theory
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevLett.19.1095 · doi:10.1103/PhysRevLett.19.1095
[2] DOI: 10.1007/BF01075696 · Zbl 0303.35024 · doi:10.1007/BF01075696
[3] DOI: 10.1103/PhysRevLett.30.1262 · doi:10.1103/PhysRevLett.30.1262
[4] DOI: 10.1103/RevModPhys.53.253 · doi:10.1103/RevModPhys.53.253
[5] DOI: 10.1103/RevModPhys.53.253 · doi:10.1103/RevModPhys.53.253
[6] DOI: 10.1016/0003-4916(72)90270-9 · doi:10.1016/0003-4916(72)90270-9
[7] DOI: 10.1007/BF01341708 · doi:10.1007/BF01341708
[8] DOI: 10.1088/0305-4470/21/16/015 · doi:10.1088/0305-4470/21/16/015
[9] DOI: 10.1088/0305-4470/21/16/015 · doi:10.1088/0305-4470/21/16/015
[10] Kulish P. P., Physica 18 pp 360– (1986)
[11] DOI: 10.1103/RevModPhys.51.275 · doi:10.1103/RevModPhys.51.275
[12] DOI: 10.1103/RevModPhys.51.275 · doi:10.1103/RevModPhys.51.275
[13] DOI: 10.1063/1.528027 · doi:10.1063/1.528027
[14] DOI: 10.1143/JPSJ.53.2899 · doi:10.1143/JPSJ.53.2899
[15] DOI: 10.1143/JPSJ.53.1933 · doi:10.1143/JPSJ.53.1933
[16] Izergin A. G., Sov. J. Part. Nucl. 13 pp 207– (1982)
[17] DOI: 10.1007/BF01018447 · doi:10.1007/BF01018447
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.