×

Boson operator realizations of su(2) and su(1,1) and unitarization. (English) Zbl 0663.22014

Boson operator realizations of su(2) and su(1,1) are obtained. Scalar products are introduced on “Fock spaces” (Verma modules) spanned by generators of the Heisenberg algebra H and by generators of su(2). These scalar products unitarize certain of the representations of H, or of su(1,1). It is shown that the Gel’fand-Dyson realization of su(1,1) implies a scalar product that unitarizes H, while the Primakoff-Holstein realizations imply a scalar product that unitarizes su(1,1). The relationship between the Gel’fand-Dyson boson operators \(a^{†}\) and the Primakoff-Holstein boson operators \(b^{†}\) is obtained making use of the two distinct scalar products. Generalized “vacuum states” are defined that are formed by polynomials in the creation-annihilation operator pairs \(a^{†}a\). A representation \(\rho\) of H and su(1,1) on the states \(a^{† m}\) and \(a^ n\) is discussed. For this representation \(a\mathbf{1} =a| 0>\neq 0\), but rather \((a^{†}a)| 0>=0\). The states of this representation space consist of boson states and boson-hole states. All the familiar results of H and su(1,1) representation theory are preserved within the representation \(\rho\).

MSC:

22E70 Applications of Lie groups to the sciences; explicit representations
81V45 Atomic physics
22E60 Lie algebras of Lie groups
Full Text: DOI

References:

[1] DOI: 10.1063/1.526263 · Zbl 0548.17005 · doi:10.1063/1.526263
[2] DOI: 10.1063/1.523575 · Zbl 0425.22023 · doi:10.1063/1.523575
[3] DOI: 10.1007/BF02902648 · doi:10.1007/BF02902648
[4] DOI: 10.1007/BF02902648 · doi:10.1007/BF02902648
[5] DOI: 10.1007/BF02902648 · doi:10.1007/BF02902648
[6] DOI: 10.1007/BF02902648 · doi:10.1007/BF02902648
[7] DOI: 10.2307/2372596 · Zbl 0066.35603 · doi:10.2307/2372596
[8] Gruber B., KINAM 4 pp 241– (1982)
[9] DOI: 10.4153/CJM-1985-038-9 · Zbl 0564.17002 · doi:10.4153/CJM-1985-038-9
[10] DOI: 10.4153/CJM-1985-038-9 · Zbl 0564.17002 · doi:10.4153/CJM-1985-038-9
[11] DOI: 10.4153/CJM-1985-038-9 · Zbl 0564.17002 · doi:10.4153/CJM-1985-038-9
[12] DOI: 10.1016/0003-4916(83)90244-0 · Zbl 0526.22018 · doi:10.1016/0003-4916(83)90244-0
[13] DOI: 10.1063/1.526674 · Zbl 0585.22017 · doi:10.1063/1.526674
[14] DOI: 10.1063/1.526674 · Zbl 0585.22017 · doi:10.1063/1.526674
[15] DOI: 10.1063/1.526674 · Zbl 0585.22017 · doi:10.1063/1.526674
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.