×

Nonlinear flows along magnetic flux tubes: Mathematical structure and exact simple wave solutions. (English) Zbl 0658.76110

The mathematical structure of nonlinear, isentropic longitudinal flows of an ideal magnetohydrodynamic plasma confined to a magnetic flux tube embedded in a quiescent nonmagnetic fluid is investigated. Exact analytical solutions are derived for a special type of nonlinear flow in the absence of gravity: the simple waves, for which all the unknowns depend on single functions of space and time. These exhibit analytically the formation of shock waves. Emphasis is placed on new features introduced by the magnetic distensibility, which acts as an additional restorting force, as compared with the hydrodynamic flow of gas along a rigid tube. Introducing a series expansion in a suitable parameter, it is shown that the hydrodynamic problem can be considered as the zeroth-order approach to the magnetic flux tube problem. Finally, the motion in a magnetic flux tube under the action of a piston advancing in a prescribed manner has been briefly considered. This problem is of current interest in relation to the generation of tube-guided waves in the solar atmosphere.

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
76M99 Basic methods in fluid mechanics
Full Text: DOI

References:

[1] J. O. Stenflo, in Energy Balance and Hydrodynamics of the Solar Chromosphere and Corona, edited by R. M. Bonnet and P. Delache, International Astronomical Union Colloquium 36 (G. de Bussac, Clermont-Ferrand, 1976), p. 143.
[2] J. W. Harvey, in Highlights of Astronomy, edited by E. Müller (Reidel, Dordrecht, 1977), Part II, p. 223.
[3] E. N. Parker, Cosmical Magnetic Fields (Clarendon, Oxford, 1979).
[4] H. C. Spruit, in The Sun as a Star, edited by S. Jordan, SP-450 (NASA, Washington, DC, 1981), p. 385. · Zbl 0471.76056
[5] H. C. Spruit and B. Roberts, Nature (London) 304, 401 (1983).NATUAS0028-0836
[6] J. O. Stenflo, Sol. Phys. 100, 189 (1985).SLPHAX0038-0938
[7] R. Howard and J. O. Stenflo, Sol. Phys. 22, 402 (1972).SLPHAX0038-0938
[8] M. Stix, Astron. Nach. 305, 215 (1984), and references therein. · doi:10.1002/asna.2113050502
[9] L. Golub, R. Rosner, G. S. Vaiana, and N. O. Weiss, Astrophys. J. 243, 309 (1981).ASJOAB0004-637X
[10] C. Zwaan, Sol. Phys. 60, 213 (1978).SLPHAX0038-0938
[11] D. J. Galloway and N. O. Weiss, Astrophys. J. 243, 945 (1981).ASJOAB0004-637X
[12] E. N. Parker, Astrophys. J. 189, 563 (1974).ASJOAB0004-637X
[13] R. J. Defouw, Astrophys. J. 209, 266 (1976).ASJOAB0004-637X
[14] B. Roberts and A. R. Webb, Sol. Phys. 56, 5 (1978).SLPHAX0038-0938
[15] H. C. Spruit, Astron. Astrophys. 98, 155 (1981).AAEJAF0004-6361
[16] A. Ferriz-Mas, M. Schüssler, and V. Anton, to appear in Astron. Astrophys.
[17] H. C. Spruit, Sol. Phys. 75, 3 (1982).SLPHAX0038-0938
[18] I. C. Rae and B. Roberts, Astrophys. J. 256, 761 (1982).ASJOAB0004-637X
[19] B. Roberts, Sol. Phys. 69, 39 (1981).SLPHAX0038-0938
[20] B. Roberts, in Proceedings of the Fourth European Meeting on Solar Physics–The Hydrodynamics of the Sun, Noordwijkerhout, The Netherlands, 1984, ESA SP-220 (European Space Agency, Paris, 1984), p. 137.
[21] B. Roberts and A. Mangeney, Mon. Not. R. Astron. Soc. 198, 7 (1982).MNRAA40035-8711 · doi:10.1093/mnras/198.1.7P
[22] B. Roberts, in Solar and Stellar Magnetic Fields: Origins and Coronal Effects, International Astronomical Union Symposiom 102, edited by J. O. Stenflo (International Astronomical Union, Dordrecht, 1983), p. 61. · doi:10.1007/978-94-009-7181-3_6
[23] B. Roberts, Phys. Fluids 28, 3280 (1985).PFLDAS0031-9171
[24] P. M. Edwin and B. Roberts, Wave Motion 8, 151 (1986).WAMOD90165-2125
[25] E. G. Merzljakov and M. S. Ruderman, Sol. Phys. 95, 51 (1985).SLPHAX0038-0938
[26] G. Herbold, P. Ulmschneider, H. C. Spruit, and R. Rosner, Astron. Astrophys. 145, 157 (1985).AAEJAF0004-6361
[27] J. V. Hollweg, S. Jackson, and D. Galloway, Sol. Phys. 75, 35 (1982).SLPHAX0038-0938
[28] P. H. Roberts, An Introduction to Magnetohydrodynamics (Longmans, London, 1967).
[29] E. R. Priest, Solar Magnetohydrodynamics (Reidel, Dordrecht, 1982). · doi:10.1007/978-94-009-7958-1
[30] For simplicity of notation we shall hereafter denote partial derivatives by subscripts, e.g., {\(\rho\)}z(z,t){\(\rho\)}(z,t)/z.
[31] R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience, New York, 1962), Vol. II, Chap. V. · Zbl 0099.29504
[32] F. Moreno-Insertis, Ph.D. thesis, Universität München, 1984.
[33] F. Moreno-Insertis, Astron. Astrophys. 166, 291 (1986).AAEJAF0004-6361
[34] M. J. Lighthill, Waves in Fluids (Cambridge U.P., London, 1978). · Zbl 0375.76001
[35] R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves (Springer, Berlin, 1976). · Zbl 0365.76001 · doi:10.1007/978-1-4684-9364-1
[36] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics (Pergamon, New York, 1959), Vol. VI, Chap. X.
[37] R. E. Meyer, Introduction to Mathematical Fluid Dynamics (Dover, New York, 1971). · Zbl 0225.76001
[38] A. Ferriz-Mas and F. Moreno-Insertis, Astron. Astrophys. 179, 268 (1987).AAEJAF0004-6361
[39] B. Roberts, Sol. Phys. 61, 23 (1979).SLPHAX0038-0938
[40] See Ref. 5, p. 403.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.