×

The demographic variation process of branching random fields. (English) Zbl 0657.60051

Author’s summary: A branching random field with immigration is considered. The demographic variation process is a non-Markovian signed measure-valued process which measures the changes in the system due to branchings and deaths in the population. The asymptotic behavior of this process under various scalings is studied. It is shown that the fluctuation limits are generalized Gaussian processes which are Markovian if and only if the branching is critical, in which case they are non- stationary generalized Ornstein-Uhlenbeck processes.
Reviewer: D.A.Dawson

MSC:

60F17 Functional limit theorems; invariance principles
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60G20 Generalized stochastic processes
Full Text: DOI

References:

[1] Aldous, D. J., Weak convergence and the general theory of processes (1981), Manuscript · Zbl 0465.60061
[2] Athreya, K. B.; Ney, P., (Branching Processes (1972), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0259.60002
[3] Bojdecki, T.; Gorostiza, L. G., Langevin equations for \(S\)′-valued Gaussian processes and fluctuation limits of infinite particle systems, Probab. Theory Relat. Fields, 73, 227-244 (1986) · Zbl 0595.60096
[4] Boulicaut, P., Convergence cylindrique et convergence étroite d’une suite de probabilités de Radon, Z. Wahrsch. Verw. Gebiete, 28, 43-52 (1973) · Zbl 0276.60003
[5] Chung, K. L., A course in Probability Theory (1968), Harcourt, Brace World: Harcourt, Brace World New York · Zbl 0159.45701
[6] Dawson, D. A., The critical measure diffusion process, Z. Wahrsch. Verw. Gebiete, 40, 125-145 (1977) · Zbl 0343.60001
[7] Dawson, D. A., Limit theorems for interaction free geostochastic systms, (Colloq. Math. Soc. Janos Bolyai, Vol. 24 (1980), North-Holland: North-Holland Amsterdam), 27-47 · Zbl 0463.60051
[8] Dawson, D. A.; Ivanoff, B. G., Branching diffusions and random measures, (Joffe, A.; Ney, P., Advances in Probability, Vol. 5 (1978), Dekker: Dekker New York), 61-104 · Zbl 0407.60087
[9] Fernández, B., Teoremas límites de alta densidad para campos aleatorios ramificados, (Aportaciones Mat. Communicaciones, Vol. 2 (1986), Soc. Mat. Mexicana: Soc. Mat. Mexicana Mexico City), (M. Sc. thesis. IIMAS-UNAM.) · Zbl 0614.60079
[10] Gelfand, I. M.; Vilenkin, N. J., (Generalized Functions, Vol. 4 (1966), Academic Press: Academic Press New York) · Zbl 0144.17202
[11] Gorostiza, L. G., High density limit theorems for infinite systems of unscaled branching Brownian motions, Ann. Probab., 11, 374-392 (1984) · Zbl 0519.60085
[12] Gorostiza, L. G., Space scaling limit theorems for infinite particle branching Brownian motions with immigration, (Metivier, M.; Pardoux, E., Stochastic Differential Systems. Stochastic Differential Systems, Lect. Notes in Control and Inform. Sci., Vol. 69 (1985), Springer-Verlag: Springer-Verlag Berlin), 91-99 · Zbl 0562.60061
[13] Gorostiza, L. G., Asymptotics and spatial growth of branching random fields, (Tautu, P., Stochastic Spatial Processes. Mathematical Theories and Biological Applications. Stochastic Spatial Processes. Mathematical Theories and Biological Applications, Lect. Notes in Math., Vol. 1212 (1985), Springer-Verlag: Springer-Verlag Berlin), 124-135 · Zbl 0603.60077
[14] Holley, R.; Stroock, D. W., Central limit phenomena of various interacting systems, Ann. Math., 110, 333-393 (1979) · Zbl 0393.60018
[15] Holley, R.; Stroock, D. W., Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions, Publ. Res. Inst. Math. Sci., 14, 741-788 (1981) · Zbl 0412.60065
[16] Itô, K., Infinite dimensional Ornstein-Uhlenbeck processes, (Stochastic Analysis. Proc. Taniguchi Symp.. Stochastic Analysis. Proc. Taniguchi Symp., Katata 1983 (1984), North-Holland: North-Holland Amsterdam), 197-224 · Zbl 0564.60056
[17] Itô, K., (Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces (1984), Soc. Indus, Appl. Math: Soc. Indus, Appl. Math Philadelphia) · Zbl 0547.60064
[18] Ivanoff, B. G., The branching random field, Adv. in Probab., 12, 825-847 (1980) · Zbl 0436.60041
[19] Ivanoff, B. G., The branching diffusion with immigration, J. Appl. Probab., 17, 1-15 (1981) · Zbl 0423.60066
[20] Kallianpur, G.; Pérez-Abreu, V., (Stochastic Evolution Equations Driven by Nuclear Space Valued Martingales (1987), Center for Stochastic Processes, University of North Carolina), Tech. Rep. 204 · Zbl 0643.60049
[21] Kotelenez, P., On the semigroup approach to stochastic evolution equations, (Stochastic Space-Time Models and Limit Theorems (1985), Reidel: Reidel Dordrecht), 95-140 · Zbl 0591.60054
[22] Kurtz, T. G., (Approximation of Population Processes (1981), Soc. Indus. Appl. Math: Soc. Indus. Appl. Math Philadelphia) · Zbl 0465.60078
[23] Martin-Löf, Limit theorems for the motion of a Poisson system of independent Markovian particles with high density, Z. Wahrsch. Verw. Gebiete, 34, 205-223 (1976) · Zbl 0332.60038
[24] Meidan, R., On the connection between ordinary and generalized stochastic processes, J. Math. Anal. Appl., 76, 124-133 (1980) · Zbl 0453.60040
[25] Mitoma, I., On the norm continuity of \(S\)′-valued Gaussian processes, Nagoya Math. J., 82, 209-220 (1981) · Zbl 0452.60044
[26] Mitoma, I., On the sample continuity of \(S\)′-processes, J. Math. Soc. Japan, 35, 629-636 (1983) · Zbl 0507.60029
[27] Mitoma, I., Tightness of probabilities in \(C\)([0, 1],\(S\)′) and \(D\)([0, 1],\(S\)′), Ann. Probab., 11, 989-999 (1983) · Zbl 0527.60004
[28] Walsh, J. B., An introduction to stochastic partial differential equations, (Lect. Notes in Math., Vol. 1180 (1986), Springer-Verlag: Springer-Verlag New York/Berlin), 266-439 · Zbl 0608.60060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.