×

Stability of finite-amplitude interfacial waves. III. The effect of basic current shear for one-dimensional instabilities. (English) Zbl 0642.76056

Summary: [For the former parts see the authors, ibid. 160, 297-336 (1985; Zbl 0614.76020).]
We consider the linearized stability of interfacial progressive waves in a two-layer inviscid fluid, for the case when there is a basic current shear in either, or both, of the fluids. For this configuration the basic wave has been calculated in part I. Our results here are mainly restricted to two-space-dimensional instabilities (i.e. one-dimensional in the propagation space), and are obtained both analytically and numerically. The analytical results are for the long-wavelength modulational instability of small-amplitude waves. The numerical results are restricted to the case when the lower fluid is infinitely deep, and for the Boussinesq approximation. They are obtained by solving the linearized stability problem with truncated Fourier series, and solving the resulting eigenvalue problem for the growth rate. For small values of the basic current shear, and for small or moderate basic wave amplitude, the instabilities are determined by a set of low-order resonances; for larger basic wave amplitude, these are dominated by the onset of a local wave-induced Kelvin-Helmholtz instability. For larger values of the basic current shear, this interpretation is modified owing to the appearance of a number of new effects.

MSC:

76E05 Parallel shear flows in hydrodynamic stability
76M99 Basic methods in fluid mechanics
Full Text: DOI

References:

[1] Davey, Proc. R. Soc. Lond. 338 pp 101– (1974)
[2] Benney, J. Math. Phys. 46 pp 133– (1967) · Zbl 0153.30301 · doi:10.1002/sapm1967461133
[3] DOI: 10.1017/S0022112062001469 · Zbl 0117.43605 · doi:10.1017/S0022112062001469
[4] DOI: 10.1007/BF00913182 · doi:10.1007/BF00913182
[5] Yuen, Adv. Appl. Mech. 22 pp 67– (1982)
[6] DOI: 10.1017/S0022112082003152 · Zbl 0502.76026 · doi:10.1017/S0022112082003152
[7] DOI: 10.1017/S0022112085003500 · doi:10.1017/S0022112085003500
[8] DOI: 10.1063/1.864372 · Zbl 0569.76023 · doi:10.1063/1.864372
[9] DOI: 10.1063/1.864239 · Zbl 0524.76087 · doi:10.1063/1.864239
[10] DOI: 10.1017/S0022112060001043 · Zbl 0094.41101 · doi:10.1017/S0022112060001043
[11] DOI: 10.1103/PhysRevLett.46.817 · doi:10.1103/PhysRevLett.46.817
[12] DOI: 10.1017/S0022112082000172 · Zbl 0483.76027 · doi:10.1017/S0022112082000172
[13] DOI: 10.1017/S0022112082000184 · Zbl 0494.76015 · doi:10.1017/S0022112082000184
[14] DOI: 10.1017/S0022112083000580 · Zbl 0557.76044 · doi:10.1017/S0022112083000580
[15] DOI: 10.1017/S0022112067001739 · Zbl 0173.53702 · doi:10.1017/S0022112067001739
[16] Hasselmann, Rev. Geophys 4 pp 1– (1966)
[17] DOI: 10.1017/S0022112085003494 · Zbl 0614.76020 · doi:10.1017/S0022112085003494
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.