×

Note on I-good filtration and noetherian Rees rings. (English) Zbl 0641.13007

Let R be a commutative ring and E an R-module. Let \(f=(I_ n)\) be a filtration on R and \(e=(E_ n)\) a filtration on E. In the case where \(I_ n=I^ n\), I an ideal, e is said to be I-good if \(IE_ n\subseteq E_{n+1}\) for all \(n\geq 1\) with equality for large n. The purpose of this paper is to extend results concerning I-good filtrations to f-good filtrations where e is defined to be f-good if \(I_ mE_ n\subseteq E_{m+n}\) for all m,n\(\geq 1\) (i.e., e is f-compatible) and there exists an m such that \(E_ n=\sum^{m}_{i=1}I_{n-i}E_ i\quad for\) all \(n>m\). For example, it is shown that if each \(E_ n\) is finitely generated and e is f-compatible, then e is f-good if and only if E is a finitely generated \(S(R,f)=R[tI_ 1,t^ 2I_ 2,...]\)-module. This is used to obtain various analogs of the Artin-Rees lemma. Necessary and sufficient conditions are given for the Rees ring of f, \(R(R,f)=S[R,f][t^{-1}]\) to be Noetherian. Special attention is given to essentially power filtrations (e.p.f): f is an e.p.f. if there exists a positive integer m such that \(I_ n=\sum^{m}_{i=1}I_{n-i}I_ i\quad for\) all \(n\geq 1\), where \(I_ j=R\) for \(j\geq 0\).
Reviewer: D.D.Anderson

MSC:

13A15 Ideals and multiplicative ideal theory in commutative rings
13E05 Commutative Noetherian rings and modules
13C99 Theory of modules and ideals in commutative rings
Full Text: DOI

References:

[1] Bourbaki N., Elements of Mathematics:Commutative Algebra (1972)
[2] DOI: 10.1007/BF01350720 · Zbl 0155.07903 · doi:10.1007/BF01350720
[3] DOI: 10.1080/00927878608823349 · doi:10.1080/00927878608823349
[4] DOI: 10.1307/mmj/1029002263 · Zbl 0402.13003 · doi:10.1307/mmj/1029002263
[5] DOI: 10.1080/00927878508823265 · Zbl 0573.13014 · doi:10.1080/00927878508823265
[6] DOI: 10.1016/0022-4049(86)90101-5 · Zbl 0609.13016 · doi:10.1016/0022-4049(86)90101-5
[7] DOI: 10.1112/S002557930000108X · Zbl 0089.26003 · doi:10.1112/S002557930000108X
[8] DOI: 10.1017/S0305004100034800 · doi:10.1017/S0305004100034800
[9] Sakuma M., J. Gakugei, Tokushiyna Univ 15 pp 36– (1966)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.