×

Asymptotics for some Green kernels on the Heisenberg group and the Martin boundary. (English) Zbl 0639.31005

In the first part of our paper we consider the fundamental solution \(p_ s(z,t)\) of the heat equation \(\Delta _ K-\partial /\partial s\), where \(\Delta _ K\) is the Laplace-Kohn operator on the Heisenberg group \({\mathbb{H}}\) with coordinates (z,t)\(\in {\mathbb{C}}\times {\mathbb{R}}\). We present a complete picture of the asymptotic behaviour of \(p_ 1(z,t)\) as \(| z| +| t|\) tends to infinity. This generalizes results of B. Gaveau [Acta Math. 139, 59-153 (1977; Zbl 0366.22010)], who describes the asymptotic behaviour of \(p_ s(z,t)\) for fixed (z,t) and \(s\to 0.\)
In the second part of the paper we describe the asymptotic behaviour of the fundamental solution K(z,t) of the equation \(\Delta _ K-2\) on \({\mathbb{H}}\). Using these results we are able to determine the Martin compactification of \({\mathbb{H}}\) with respect to \(\Delta _ K-2\), which is done in the last section. We show that the Martin boundary is homeomorphic to the Martin compactification of \({\mathbb{R}}^ 2 \)with respect to \(\Delta\)-2, where \(\Delta\) is the usual Laplacian on \({\mathbb{R}}^ 2.\) Especially we find, that every positive \((\Delta _ K- 2)\)-harmonic function on \({\mathbb{H}}\) is indepenent of t. Hence it is a (\(\Delta\)-2)-harmonic function of z.
Reviewer: H.Hueber

MSC:

31C05 Harmonic, subharmonic, superharmonic functions on other spaces
31C35 Martin boundary theory
35A08 Fundamental solutions to PDEs
35K05 Heat equation

Citations:

Zbl 0366.22010

References:

[1] Br?lot, M.: On topological boundaries in potential theory. (Lecture notes in mathematics, Vol. 175.) Berlin Heidelberg New York: Springer 1971
[2] Courant, R.: Vorlesungen ?ber Differential- und Integralrechnung 1. Berlin Heidelberg New York: Springer 1971 · Zbl 0217.37201
[3] Cygan, J.: Fundamental solution of the heat equation on the Heisenberg group. Preprint, Polish academy of mathematics
[4] Erd?ily, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: (Higher transcendental functions, Vol. 2). New York: McGraw-Hill 1953 · Zbl 0051.30303
[5] Folland, G.B., Stein, E.M.: Hardy spaces on homogeneous groups. Princeton: Princeton University Press 1982 · Zbl 0508.42025
[6] Gaveau, B.: Principe de moindre action, propagation de la chaleur et estim?es sous elliptiques sur certains groupes nilpotents. Acta Math.139, 59-153 (1977) · Zbl 0366.22010 · doi:10.1007/BF02392235
[7] Helffer, B., Nourrigat, J.: Caract?risation des op?rateurs hypoelliptiques homog?nes invariants ? gauche sur un groupe de Lie nilpotent gradu?. Commun. Partial Differ. Equations4, 899-958 (1979) · Zbl 0423.35040 · doi:10.1080/03605307908820115
[8] Helms, L.L.: Introduction to potential theory. (Pure and applied Mathematics, Vol. 22) New York London Sydney Toronto: Wiley 1969 · Zbl 0188.17203
[9] Herv?, R.M., Herv?, M.: Les fonctions sur-harmoniques dans l’axiomatique de M. Br?lot associe?s ? un op?rateur elliptique d?g?n?r?. Ann. Inst. Fourier22 (2), 131-145 (1972)
[10] H?rmander, L.: Hypoelliptic second-order differential equations. Acta Math.119, 147-171 (1967) · Zbl 0156.10701 · doi:10.1007/BF02392081
[11] Hulanicki, A.: The distribution of energy in the Brownian motion in Gaussian field and analytic hypoellipticity of certain subelliptic operators on the Heisenberg group. Stud. Math.56, 165-173 (1976) · Zbl 0336.22007
[12] Margulis, G.A.: Positive harmonic functions on nilpotent groups. Sov. Math.7, 241-243 (1966) · Zbl 0187.38902
[13] Rockland, C.: Hypoellipticity for the Heisenberg group. Trans. Am. Math. Soc.240, 1-52 (1978) · Zbl 0326.22007 · doi:10.1090/S0002-9947-1978-0486314-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.