×

Multi-dimensional discretization scheme for the hydrodynamic model of semiconductor devices. (English) Zbl 0622.76085

A discretization technique is proposed for the multi-dimensional, steady- state hydrodynamic model of semiconductor devices, and a derivation of the model’s appropriate boundary conditions is given. The model includes the complete balance equations for charge, momentum and energy, coupled with Poisson’s equation, thus accounting for both diffusion and convection phenomena. The technique, like the Scharfetter-Gummel scheme for the simpler drift-diffusion model, provides an efficient method for solving the hydrodynamic equations, allowing for a more detailed investigation of carrier dynamics in semiconductor devices.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82B05 Classical equilibrium statistical mechanics (general)
82C70 Transport processes in time-dependent statistical mechanics
Full Text: DOI

References:

[1] DOI: 10.1049/el:19760470 · doi:10.1049/el:19760470
[2] DOI: 10.1109/T-ED.1984.21813 · doi:10.1109/T-ED.1984.21813
[3] DOI: 10.1109/EDL.1985.26187 · doi:10.1109/EDL.1985.26187
[4] DOI: 10.1016/0038-1101(85)90100-5 · doi:10.1016/0038-1101(85)90100-5
[5] DOI: 10.1108/eb009966 · doi:10.1108/eb009966
[6] DOI: 10.1109/T-ED.1970.16921 · doi:10.1109/T-ED.1970.16921
[7] DOI: 10.1007/978-3-7091-8752-4 · doi:10.1007/978-3-7091-8752-4
[8] DOI: 10.1109/PROC.1983.12524 · doi:10.1109/PROC.1983.12524
[9] Varga R.S., Matrix Iterative Analysis (Englewood Cliffs: Prentice Hall (1962) · Zbl 0133.08602
[10] Winslow A.M., J. Comput. Phys. 2 pp 149– (1967)
[11] DOI: 10.1109/T-ED.1973.17727 · doi:10.1109/T-ED.1973.17727
[12] DOI: 10.1109/T-ED.1985.22234 · doi:10.1109/T-ED.1985.22234
[13] Guerrieri R., Proc. of the NASECODE IV Conf., J.J.H. Miller, ed. (Dublin: Boole Press pp 3– (1985)
[14] DOI: 10.1109/TCAD.1985.1270151 · doi:10.1109/TCAD.1985.1270151
[15] McCartin B.J., New Problems and New Solutions for Device and Process Modeling pp 72– (1985)
[16] DOI: 10.1109/T-ED.1969.16566 · doi:10.1109/T-ED.1969.16566
[17] Cottrell P.E., Proc. of the NASECODE I Conf., B.T. Browne and J.J.H. Miller, eds. (Dublin: Boole Press pp 31– (1979)
[18] DOI: 10.1147/rd.254.0218 · doi:10.1147/rd.254.0218
[19] Grossman B.M., Computing Methods in Applied Sciences and Engineering, VI, R. Glowinski and J.-L pp 697– (1984)
[20] Engl W., Proc. of the NASECODE I Conf., B.T. Browne and J.J.H. Miller, eds. (Dublin: Boole Press pp 65– (1979)
[21] Kerkhoven T., On the Choice of Coordinates for Semiconductor Simulation (1984)
[22] DOI: 10.1007/978-3-642-61798-0 · Zbl 0361.35003 · doi:10.1007/978-3-642-61798-0
[23] DOI: 10.1147/rd.293.0289 · doi:10.1147/rd.293.0289
[24] DOI: 10.1103/PhysRev.126.2002 · doi:10.1103/PhysRev.126.2002
[25] DOI: 10.1109/T-ED.1982.20816 · doi:10.1109/T-ED.1982.20816
[26] Baccarani G., Nijhoff pp 647– (1982)
[27] Cercignani C., Theory and Application of the Boltzmann Equation (New York: Elsevier (1975) · Zbl 0403.76065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.