×

Conjugate gradient algorithms for conic functions. (English) Zbl 0622.65045

The conjugate gradient method is modified to deal with the unconstrained optimization of the conic function in a finite number of steps. Based on a more general class of model functions, further extension of the method is provided.
A class of functions generalizing the quadratic function contains the conic functions introduced by various authors (e.g., Bjorstad and Nocedal (1980), Davidson (1980), Sorensen (1980), etc.). The current effort aims to modify the existing conjugate gradient method for minimizing conic functions. Results in regard to conic functions and interpolations are first derived. A comprehensive treatment of the derivation and analysis of the proposed method is provided. A new algorithm is described, which finds a minimum of the conic function after a finite number of perfect steps in the regular case. This is followed by the investigation of an imperfect version of the method. The last section proposes further extension of the conjugate gradient method based on a ore general class of model functions.
Reviewer: N.A.Warsi

MSC:

65K05 Numerical mathematical programming methods
90C20 Quadratic programming

References:

[1] J. Abaffy F. Sloboda: Imperfect conjugate gradient algorithms for extended quadratic functions. Numer. Math. 42, 97-105 (1983). · Zbl 0524.65045 · doi:10.1007/BF01400920
[2] E. M. L. Beale: A derivation of conjugate gradients. Nonlinear Optimization (Lootsma, F.A. New York: Academic Press 1972. · Zbl 0279.65052
[3] P. Bjørstad J. Nocedal: Analysis of a new algorithm for one-dimensional minimization. Computing 22, 93-100 (1979). · Zbl 0401.65041 · doi:10.1007/BF02246561
[4] W. R. Boland E. R. Kamgnia J. S. Kowalik: A conjugate-gradient optimization method invariant to nonlinear scaling. J. Optimization Theory Appl. 27, 221 - 230 (1979). · Zbl 0372.49013 · doi:10.1007/BF00933228
[5] W. C. Davidon: Conic approximations and collinear scalings for optimizers. SIAM J. Numer. Anal. 17, 268-281 (1980). · Zbl 0424.65026 · doi:10.1137/0717023
[6] L. C. W. Dixon: Conjugate gradient algorithms: Quadratic termination properties without line searches. J. Inst. Math. Appl. 15, 9-18 (1975). · Zbl 0294.90076 · doi:10.1093/imamat/15.1.9
[7] R. Fletcher C. M. Reeves: Function minimization by conjugate gradients. Comput. J. 7, 149-154 (1964). · Zbl 0132.11701 · doi:10.1093/comjnl/7.2.149
[8] I. Fried: N-step conjugate gradient minimization scheme for nonquadratic functions. AIAA J. 9, 2286-2287 (1971). · Zbl 0235.65040 · doi:10.2514/3.6507
[9] M. R. Hestenes E. Stiefel: The method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards, Section B 49, 409-436 (1952). · Zbl 0048.09901 · doi:10.6028/jres.049.044
[10] J. S. Kowalik E. R. Kamgnia W. R. Boland: An exponential function as a model for a conjugate gradient optimization method. J. Math. Anal. Appl. 67, 476-482 (1979). · Zbl 0416.65045 · doi:10.1016/0022-247X(79)90037-4
[11] M. J. D. Powell: Restart procedures for the conjugate gradient method. Math. Programming 12, 241-254 (1977). · Zbl 0396.90072 · doi:10.1007/BF01593790
[12] J. E. Shirey: Minimization of extended quadratic functions. Numer. Math. 39, 157-161 (1982). · Zbl 0491.65038 · doi:10.1007/BF01408690
[13] F. Sloboda: An imperfect conjugate gradient algorithm. Aplikace matematiky 27, 426-434 (1982). · Zbl 0503.65017
[14] F. Sloboda: A generalized conjugate gradient algorithm for minimization. Numer. Math. 35, 223-230 (1980). · Zbl 0424.65033 · doi:10.1007/BF01396318
[15] D. C. Sorensen: The Q-superlinear convergence of a collinear scaling algorithm for unconstrained optimization. SIAM J. Numer. Anal. 17, 84-114 (1980). · Zbl 0428.65040 · doi:10.1137/0717011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.