×

Resistive ballooning modes driven by anomalous transport effects. (English) Zbl 0618.76124

Using Braginskij’s two-fluid description, the stability of the high m,n resistive ballooning mode is investigated under two interesting regimes typified by \(\omega_ s\ll | \omega | \leq \omega_ s/S\) and \(| \omega | \gg \omega_ s/S\) in the presence of classical resistivity, electron thermal conduction, and anomalous transport effects such as electron viscosity and radial thermal conductivity. It is assumed that the major contributions to the anomalous transport coefficients come either from the nonlinear terms \((\bar B.\nabla)P_ e\) and \((\bar B.\nabla)\chi_{\|}\) \((\bar B.{\bar \nabla})T_ e\), representing the parallel pressure gradient and thermal conduction terms, respectively, or from the microscopic turbulent fluctuations in density/temperature and magnetic field. A generalized set of coupled second-order equations in \({\bar \phi}\) and \({\bar \psi}\) is derived and solved to obtain analytical solutions by variational as well as asymptotic matching techniques. It is shown that the anomalous thermal transport term excites the new \(m=1\) resistive ballooning mode \((| \omega | \gg C_ s/qR)\) with a large growth rate. The excitation of the \(m=2\) type (or \(\Delta'\) driven) mode, on the other hand, is found to be strongly influenced by both anomalous electron viscosity and radial thermal conduction.
Reviewer: K.M.Srivastava

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76T99 Multiphase and multicomponent flows
82D10 Statistical mechanics of plasmas
Full Text: DOI

References:

[1] V. M. Leonov, V. O. Merezhkin, V. S. Mukhovatov, V. V. Sannikov, and G. N. Talinin, in theProceedings of the 8th International Conference on Plasma Physics and Controlled Nuclear Fusion Research(IAEA, Vienna, 1981), Vol. I, p. 393;
[2] Swain, Nucl. Fusion 21 pp 1409– (1981) · doi:10.1088/0029-5515/21/11/005
[3] B. A. Carreras, R. C. Isler, J. L. Dunlap, L. E. Murray, J. D. Bell, L. A. Charlton, W. A. Cooper. R. A. Dory, T. C. Hender, H. R. Hicks, J. T. Hogan, J. A. Holmes, H. C. Howe, E. A. Lazarus, D. K. Lee, V. E. Lynch, J. Munro, M. Murakami, A. P. Navarro, G. H. Nielson, V. K. Pare, K. E. Rothe, D. J. Sigmar, R. M. Wieland, and A. J. Wootton, inProceedings of the Ninth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, 1982 (IAEA, Vienna, 1983), Vol. III, p. 77.
[4] Carreras, Phys. Rev. Lett. 50 pp 503– (1983)
[5] Strauss, Phys. Fluids 24 pp 2004– (1981)
[6] Correa-Restrepo, Z. Naturforsch. 37A pp 848– (1982) · doi:10.1088/0029-5515/21/11/005
[7] J. D. Callen, B. A. Carreras, P. H. Diamond, M. E. Benchikh-Lehocine, L. Garcia, and H. R. Hicks, inProceedings of the Ninth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, 1982 (IAEA, Vienna, 1983), Vol. I, p. 297.
[8] B. A. Carreras, J. L. Dunlap, W. A. Cooper, R. A. Dory, T. C. Hender, M. Murakami, V. K. Paré, A. J. Wootton, J. D. Bell, L. A. Charlton, H. R. Hicks, J. A. Holmes, V. E. Lynch, R. M. Wieland, P. H. Diamond, and P. L. Similon (private communication).
[9] Sundaram, Phys. Rev. Lett. 52 pp 1617– (1984)
[10] Eubank, Phys. Rev. Lett. 43 pp 270– (1979)
[11] Murakami, Phys. Rev. Lett. 42 pp 655– (1979) · doi:10.1088/0029-5515/21/11/005
[12] Waltz, Phys. Rev. Lett. 42 pp 652– (1979)
[13] Surko, Phys. Rev. Lett. 37 pp 1747– (1976)
[14] Slusher, Phys. Rev. Lett. 40 pp 400– (1978) · doi:10.1088/0029-5515/21/11/005
[15] Surko, Phys. Fluids 23 pp 472– (1980)
[16] 2425 (1980).
[17] Zweben, Phys. Rev. Lett. 42 pp 1270– (1979)
[18] Zweben, Nucl. Fusion 21 pp 193– (1981) · doi:10.1088/0029-5515/21/2/007
[19] Barnes, Phys. Fluids 26 pp 2668– (1983)
[20] Haas, Plasma Phys. 23 pp 1027– (1981)
[21] Rechester, Phys. Rev. Lett. 40 pp 38– (1978)
[22] Stix, Nucl. Fusion 18 pp 87– (1978) · doi:10.1088/0029-5515/21/2/007
[23] S. I. Braginskii, inReviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. I, p. 205.
[24] J. W. Connor, R. I. Hastie, T. J. Martin, A. Sykes, and M. F. Turner, inProceedings of the Ninth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, 1982 (IAEA, Vienna, 1983), Vol. II, p. 403.
[25] Hazeltine, Phys. Fluids 22 pp 1932– (1979)
[26] Advanced Mathematical Methods for Scientists and Engineers, edited by C. M. Bender and S. A. Orszag (McGraw-Hill, New York, 1978), p. 335. · Zbl 0417.34001
[27] Kaw, Phys. Rev. Lett. 43 pp 1338– (1979)
[28] V. M. Gribkov, D. K. Morozov, O. P. Pogutse, E. I. Yurchenko, inProceedings of the 8th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (IAEA, Vienna, 1981), Vol. I, p. 571.
[29] Sen, Phys. Fluids 24 pp 1303– (1981)
[30] Tables of Integrals, Series and Productsedited by I. S. Gradshteyn and I. M. Rhyzik (Academic, New York, 1980), p. 971.
[31] Drake, Phys. Fluids 26 pp 2509– (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.