×

De Morgan algebras are universal. (English) Zbl 0618.06006

A concrete category K is called universal if the category of graphs and compatible mappings can be fully embedded into K. A bounded distributive lattice L with a unary operation \(\sim\) satisfying the identities \(\sim (a\wedge b)=\sim a\vee \sim b\), \(\sim (a\vee b)=\sim a\wedge \sim b\), \(\sim \sim a=a\) is called a de Morgan algebra. De Morgan algebras form a variety such that its lattice of subvarieties is a four-element chain [see J. A. Kalman; Trans. Am. Math. Soc. 87, 485-491 (1958; Zbl 0228.06003)]. The authors show that the variety of de Morgan algebras is universal. Moreover, the constructed embedding maps finite graphs to finite de Morgan algebras.
Reviewer: V.Koubek

MSC:

06D30 De Morgan algebras, Łukasiewicz algebras (lattice-theoretic aspects)
18B15 Embedding theorems, universal categories
08B15 Lattices of varieties

Citations:

Zbl 0228.06003
Full Text: DOI

References:

[1] M.E. Adams and D.M. Clark, Endomorphism monoids in minimal quasi primal varieties, to appear.; M.E. Adams and D.M. Clark, Endomorphism monoids in minimal quasi primal varieties, to appear. · Zbl 0714.08002
[2] Adams, M. E.; Koubek, V.; Sichler, J., Homomorphisms and endomorphisms in varieties of pseudocomplemented distributive lattices (with applications to Heyting algebras), Trans. Amer. Math. Soc., 285, 57-79 (1984) · Zbl 0523.06015
[3] Adams, M. E.; Koubek, V.; Sichler, J., Homomorphisms and endomorphisms of distributive lattices, Houston J. Math., 11, 129-145 (1985) · Zbl 0576.06011
[4] Adams, M. E.; Priestley, H. A., Kleene algebras are almost universal, Bull. Austral. Math. Soc., 34, 343-373 (1986) · Zbl 0583.06009
[5] Balbes, R.; Dwinger, Ph, Distributive Lattices (1974), University of Missouri Press: University of Missouri Press Columbia, Missouri · Zbl 0321.06012
[6] Białynicki-Birula, A., Remarks on quasi-Boolean algebras, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., 5, 615-619 (1957) · Zbl 0086.01002
[7] Białynicki-Birula, A.; Rasiowa, H., On the representation of quasi-Boolean algebras, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys., 5, 259-261 (1957) · Zbl 0082.01403
[8] Burris, S.; Sankappanavar, H. P., A Course in Universal Algebra (1981), Springer: Springer New York · Zbl 0478.08001
[9] Cornish, W. H.; Fowler, P. R., Coproducts of de Morgan algebras, Bull. Austral. Math. Soc., 16, 1-13 (1977) · Zbl 0329.06005
[10] Davey, B. A.; Duffus, D., Exponentiation and duality, (Rival, Ordered Sets, NATO Advanced Study Institutes Series (1982), Reidel: Reidel Dordrecht), 43-96 · Zbl 0509.06001
[11] Davies, R. O., On \(m\)-valued Sheffer functions, Z. Math. Logik Grundlag. Math., 25, 293-298 (1979) · Zbl 0427.03055
[12] Duffus, D.; Rival, I.; Simonovits, M., Spanning retracts of a partially ordered set, Discrete Math., 32, 1-7 (1980) · Zbl 0453.06003
[13] Fowler, P. R., De Morgan Algebras, Ph.D. Thesis, Flinders University, Australia (1980)
[14] Goldberg, M. S., Distributive \(p\)-algebras and Ockham Algebras: a Topological Approach, Ph.D. Thesis, La Trobe University, Australia (1979)
[15] Grätzer, G., Lattice Theory: First Concepts and Distributive Lattices (1971), Freeman: Freeman San Francisco · Zbl 0232.06001
[16] Grätzer, G., Universal Algebra (1979), Springer: Springer New York · Zbl 0182.34201
[17] Hedrlǐn, Z.; Pultr, A., Relations (graphs) with given finitely generated semigroups, Monatsh. Math., 68, 213-217 (1964) · Zbl 0126.26602
[18] Hedrlǐn, Z.; Pultr, A., On full embeddings of categories of algebras, Illinois J. Math., 10, 392-406 (1966) · Zbl 0139.01501
[19] Hedrlǐn, Z.; Sichler, J., Any boundable binding category contains a proper class of mutually disjoint copies of itself, Algebra Universalis, 1, 97-103 (1971) · Zbl 0236.18003
[20] Hu, T. K., Stone duality for primal algebra theory, Math. Z., 110, 180-198 (1969) · Zbl 0175.28903
[21] Kalman, J. A., Lattices with involution, Trans. Amer. Math. Soc., 87, 485-491 (1958) · Zbl 0228.06003
[22] Koubek, V., Infinite image homomorphisms of distributive bounded lattices, (Lectures in Universal Algebra (Szeged 1983). Lectures in Universal Algebra (Szeged 1983), Colloq. Math. Soc. János Bolyai, 43 (1985), North-Holland: North-Holland Amsterdam), 241-281 · Zbl 0597.06009
[23] Koubek, V.; Sichler, J., Universal varieties of distributive double \(p\)-algebras, Glasgow Math. J., 26, 121-131 (1985) · Zbl 0574.06009
[24] Magill, K. D., The semigroup of endomorphisms of a Boolean ring, (Semigroup Forum, 4 (1972)), 411-416 · Zbl 0224.06007
[25] Maxson, C. J., On semigroups of Boolean ring endomorphisms, (Semigroup Forum, 4 (1972)), 78-82 · Zbl 0262.06011
[26] Murskiǐ, V. L., The existence of a finite basis of identities and other properties of “almost all” finite algebras, Problemy Kibernet., 30, 43-56 (1975), in Russian · Zbl 0415.08005
[27] Nowakowski, R. J.; Rival, I., Fixed-edge theorem for graphs with loops, J. Graph Theory, 3, 339-350 (1979) · Zbl 0432.05030
[28] Priestley, H. A., Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc., 2, 186-190 (1970) · Zbl 0201.01802
[29] Priestley, H. A., Ordered topological spaces and the representation of distributive lattices, (Proc. London Math. Soc., 24 (1972)), 507-530, (3) · Zbl 0323.06011
[30] Priestley, H. A., Ordered sets and duality for distributive lattices, Ann. Discrete Math., 23, 39-60 (1984) · Zbl 0557.06007
[31] Pultr, A., On full embeddings of concrete categories with respect to foregetful functiors, Comment. Math. Univ. Carolinae, 9, 281-305 (1968) · Zbl 0175.29001
[32] Pultr, A.; Trnková, V., Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories (1980), North-Holland: North-Holland Amsterdam · Zbl 0418.18004
[33] R.W. Quackenbush, Random finite groupoids and Murskiǐ’s theorem, to appear.; R.W. Quackenbush, Random finite groupoids and Murskiǐ’s theorem, to appear.
[34] Rival, I., A fixed point theorem for finite partially ordered sets, J. Combin. Theory Ser. A, 21, 309-318 (1976) · Zbl 0357.06003
[35] Rival, I., The retract construction, (Rival, I., Ordered Sets. Ordered Sets, NATO Advanced Study Institutes Series (1982), Reidel: Reidel Dordrecht), 97-122 · Zbl 0491.06003
[36] Sankappanavar, H. P., A characterization of principal congruences of de Morgan algebras and its applications, (Arruda, A. I.; Cuaqui, R.; da Costa, N. C.A, Mathematical Logic in Latin America (1980), North-Holland: North-Holland Amsterdam), 341-349 · Zbl 0426.06008
[37] Schein, B. M., Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups, Fund. Math., 68, 31-50 (1970) · Zbl 0197.28902
[38] Schweigert, D.; Szymańska, M., On distributive correlation lattices, (Contributions to Lattice Theory (Szeged 1980). Contributions to Lattice Theory (Szeged 1980), Colloq. Math. Soc. János Bolyai, 33 (1983), North-Holland: North-Holland Amsterdam), 697-721 · Zbl 0522.06014
[39] Varlet, J. C., Fixed points in finite de Morgan algebras, Discrete Math., 53, 265-280 (1985) · Zbl 0558.06015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.