×

Eigenspaces of the Laplacian on hyperbolic spaces: composition series and integral transforms. (English) Zbl 0617.43005

One studies the eigenspaces \({\mathcal E}_{\lambda}\) of the Laplace- Beltrami operator \(\Delta\) of a hyperbolic space \(X=G/H\), \[ {\mathcal E}_{\lambda}=\{f\in C^{\infty}(X)| \quad \Delta f=(\lambda^ 2- \rho^ 2)f\}\quad, \] where \(G=U(p,q; {\mathbb{F}})\), \(H=U(1, {\mathbb{F}})\times U(p-1,q; {\mathbb{F}})\), \({\mathbb{F}}\) is one of the classical fields \({\mathbb{R}}\), \({\mathbb{C}}\) or \({\mathbb{H}}\), \(\rho =(dp+dq-2)\) \((d=\dim_{{\mathbb{R}}} {\mathbb{F}})\), (and also for the exceptional space \(F^ 1_ 4/Spin(1,8)\) for which one may say that \(p=2\), \(q=1\), and \({\mathbb{F}}={\mathbb{O}}\), the algebra of the Cayley numbers).
One describes explicitly the closed C-invariant subspaces of \({\mathcal E}_{\lambda}\) in terms of the K-types occuring in such a subspace, where \(K=U(p; {\mathbb{F}})\times U(q; {\mathbb{F}})\), a maximal subgroup of G. In particular one determines for which \(\lambda\) the space \({\mathcal E}_{\lambda}\) is irreducible, and also the K-types occuring in the discrete series.
The range of the Poisson transform \({\mathcal P}_{\lambda}\) is a subspace of \({\mathcal E}_{\lambda}\). One gives the values of \(\lambda\) for which this range is a proper subspace of \({\mathcal E}_{\lambda}\).
Reviewer: J.Faraut

MSC:

43A85 Harmonic analysis on homogeneous spaces
53C35 Differential geometry of symmetric spaces
Full Text: DOI

References:

[1] van den Ban, E. P., Invariant differential operators on a semisimple symmetric space and finite multiplicities in a Plancherel formula, Ark. Mat. (1984), in press · Zbl 0645.43009
[2] Berger, M., Les espaces symétriques non compacts, Ann. Sci. École Norm. Sup., 74, 85-177 (1957), (3) · Zbl 0093.35602
[3] Borel, A., Représentations de groupes localement compacts, (Lecture Notes in Math., Vol. 276 (1975), Springer-Verlag: Springer-Verlag Berlin/New York) · Zbl 0242.22007
[4] Casselman, W., Jacquet modules for real reductive groups, (Proceedings of the International Congress of Mathematicians. Proceedings of the International Congress of Mathematicians, Helsinki (1978)), 557-563 · Zbl 0425.22019
[5] Faraut, J., Distributions sphériques sur les espaces hyperboliques, J. Math. Pure Appl., 58, 369-444 (1979), (9) · Zbl 0436.43011
[6] Flensted-Jensen, M., Spherical functions on a simply connected semisimple Lie group. II. The Paley-Wiener theorem for the rank one case, Math. Ann., 228, 65-92 (1977) · Zbl 0331.43013
[7] Flensted-Jensen, M., Discrete series for semisimple symmetric spaces, Ann. of Math., 111, 253-311 (1980), (2) · Zbl 0462.22006
[8] Flensted-Jensen, M.; Okamoto, K., An explicit construction of the \(K\)-finite vectors in the discrete series for an isotropic semisimple symmetric space, Mém. Soc. Math. France (N.S.), 15, 157-199 (1984) · Zbl 0563.22008
[9] Helgason, S., Fundamental solutions of invariant differential operators on symmetric spaces, Amer. J. Math., 86, 565-601 (1964) · Zbl 0178.17001
[10] Helgason, S., A duality for symmetric spaces with applications to group representations, Adv. in Math., 5, 1-154 (1970) · Zbl 0209.25403
[11] Helgason, S., Eigenspaces of the Laplacian; integral representations and irreducibility, J. Funct. Anal., 17, 328-353 (1974) · Zbl 0303.43021
[12] Helgason, S., Groups and Geometric Analysis (1984), Academic Press: Academic Press Orlando · Zbl 0543.58001
[13] Johnson, K. D., Composition series and intertwining operators for the spherical principal series. II, Trans. Amer. Math. Soc., 215, 269-283 (1976) · Zbl 0295.22016
[14] Johnson, K. D.; Wallach, N., Composition series and intertwining operators for the spherical principal series, Trans. Amer. Math. Soc., 229, 137-173 (1977) · Zbl 0349.43010
[15] Koornwinder, T. H., A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Mat., 16, 95-108 (1978)
[16] Koornwinder, T. H., Jacobi functions and analysis on non-compact semisimple Lie groups, (Askey, R. A.; etal., Special Functions: Group Theoretical Aspects and Applications (1984), Reidel: Reidel Dordrecht), 1-85 · Zbl 0584.43010
[17] Kostant, B., On the existence and irreducibility of a certain series of representations, Bull. Amer. Math. Soc., 75, 627-642 (1969) · Zbl 0229.22026
[18] Kosters, M. T., Spherical distributions on rank one symmetric spaces, (Thesis (1983), Univ. of Leiden: Univ. of Leiden Netherlands) · Zbl 0607.43008
[19] Limič, N.; Niederle, J.; Raczka, R., Eigenfunction expansions associated with the second-order invariant operator on hyperboloids and cones. III, J. Math. Phys., 8, 1079-1093 (1967) · Zbl 0173.30102
[20] Oshima, T.; Matsuki, T., A description of discrete series for semisimple symmetric spaces, Adv. Studies in Pure Math., 4, 331-390 (1984) · Zbl 0577.22012
[21] Raczka, R.; Limič, N.; Niederle, J., Discrete degenerate representations of noncompact rotation groups, J. Math. Phys., 7, 1861-1876 (1966) · Zbl 0163.22802
[22] Rossmann, W., Analysis on real hyperbolic spaces, J. Funct. Anal., 30, 448-477 (1978) · Zbl 0395.22014
[23] Rudin, W., Eigenfunctions of the invariant Laplacian in \(B\), J. Analyse Math., 43, 136-148 (1983/1984) · Zbl 0601.32017
[24] Schlichtkrull, H., The Langlands parameters of Flensted-Jensen’s discrete series for semisimple symmetric spaces, J. Funct. Anal., 50, 133-150 (1983) · Zbl 0507.22013
[25] Schlichtkrull, H., Hyperfunctions and Harmonic Analysis on Symmetric Spaces (1984), Birkhäuser: Birkhäuser Boston/Basel/Stuttgart · Zbl 0555.43002
[26] Sekiguchi, J., Eigenspaces of the Laplace-Beltrami operator on a hyperboloid, Nagoya Math. J., 79, 151-185 (1980) · Zbl 0468.35074
[27] Strichartz, R. S., Harmonic analysis on hyperboloids, J. Funct. Anal., 12, 341-383 (1973) · Zbl 0253.43013
[28] Sugiura, M., Unitary Representations and Harmonic Analysis (1975), Kodansha: Kodansha Tokyo · Zbl 0344.22001
[29] Takahashi, R., Quelques resultats sur l’analyse harmonique dans l’espace symétrique non compact de rang 1 du type exceptionnel, (Eymard, P.; etal., Analyse Harmonique sur les Groupes de Lie II. Analyse Harmonique sur les Groupes de Lie II, Lecture Notes in Math., Vol. 739 (1979), Springer-Verlag: Springer-Verlag Berlin/New York), 511-567 · Zbl 0447.43008
[30] Vogan, D., Unitarizability of certain series of representations, Ann. of Math., 120, 141-187 (1984) · Zbl 0561.22010
[31] Knapp, A. W., Unitary representations of some groups of real rank two, (Lecture on joint work with M. W. Baldoni-Silva at Conference on Harmonic Analysis. Lecture on joint work with M. W. Baldoni-Silva at Conference on Harmonic Analysis, Marseille-Luminy, France (June 24, 1985)) · Zbl 0621.22013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.