×

Non-local fields in the Z(2) Higgs model: The global gauge symmetry breaking and the confinement problem. (English) Zbl 0615.46070

A method is proposed in lattice gauge models with matter fields which allows to study gauge superselection sectors on the level of the classical statistical system associated to the lattice quantum field theory. The method consists of extending the Gibbs state from the classical observables (continuous gauge invariant functionals) to a certain algebra of (in general non-measurable) functionals called non- local fields. The infrared asymptotics of a non-local field determines the sector to which it belongs. The archetype of non-local fields is the matter field in a complete gauge fixing like Dirac’s gauge invariant electron field.
In the Z(2) Higgs model the following results were obtained using non- local fields and convergent cluster expansions. If both the gauge coupling and the hopping parameter are small there exists locally gauge invariant finite energy states with charge -1. These states form a sector which does not contain translation invariant states. This charged sector is equivalent to the one constructed by Fredenhagen and Marcu. For large gauge coupling and small hopping parameter all non-local fields of charge -1 turned out to create the zero norm state (partial proof of confinement). For large hopping parameter non-local fields of charge -1 do create non-zero states but these states belong to the vacuum sector. The discrepancy between the unobservable bare charge defined by the charge of the field and the observable charge can be interpreted as screening. The Higgs field in an appropriate gauge fixing has non-zero expectation value in this region. The latter result shows in particular that a study of global gauge symmetry breaking in a gauge fixed formalism has no a priori relevance to physics. This is a non-local system which can produce symmetry breaking where there is no phase transition at all in terms of observables.

MSC:

46N99 Miscellaneous applications of functional analysis
81T25 Quantum field theory on lattices
Full Text: DOI

References:

[1] Fröhlich, J., Morchio, G., Strocchi, F.: Charged sectors and scattering states in quantum electrodynamics. Ann. Phys.119, 241 (1979) · doi:10.1016/0003-4916(79)90187-8
[2] Fröhlich, J.: The charged sectors of quantum electrodynamics in a framework of local observables. Commun. Math. Phys.66, 223 (1979) · doi:10.1007/BF01197187
[3] Morchio, G., Strocchi, F.: A Non-perturbative approach to the infrared problem in QED. Nucl. Phys. B211, 471 (1983) · Zbl 0634.46059 · doi:10.1016/0550-3213(83)90111-6
[4] Fredenhagen, K., Marcu, M.: Charged states inZ(2) gauge theories. Commun. Math. Phys.92, 81 (1983) · Zbl 0535.46052 · doi:10.1007/BF01206315
[5] Mack, G., Meyer, H.: A disorder parameter that tests for confinement in gauge theories with quark fields. Nucl. Phys. B200 [FS4], 249 (1982) · doi:10.1016/0550-3213(82)90086-4
[6] Bricmont, J., Fröhlich, J.: An order parameter distinguishing between different phases of lattice gauge theories with matter fields. Phys. Lett.122B, 73 (1983)
[7] Szlachanyi, K.: Non-local charged fields and the confinement problem. Phys. Lett.147 B, 335 (1984) · Zbl 0615.46070
[8] Kondo, K.I.: Order parameter for charge confinement and phase structures in the latticeU(1) gauge-higgs model. DPNU-85-04 (1985)
[9] Elitzur, S.: Impossibility of spontaneously breaking local symmetries. Phys. Rev. D12, 3978 (1975)
[10] De Angelis, G.F., DeFalco, D., Guerra, F.: Note on the abelian Higgs-Kibble model on the lattice: absence of spontaneous magnetization. Phys. Rev. D17, 1624 (1978)
[11] Fröhlich, J., Morchio, G., Strocchi, F.: Higgs phenomenon without symmetry breaking order parameter. Nucl. Phys. B190 [FS3], 553 (1981) · doi:10.1016/0550-3213(81)90448-X
[12] Dirac, P.A.M.: Gauge invariant formulation of quantum electrodynamics. Can. J. Phys.33, 650 (1955) · Zbl 0068.22801
[13] Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. I, II. Commun. Math. Phys.31, 83 (1973);42, 281 (1975) · Zbl 0274.46047 · doi:10.1007/BF01645738
[14] Osterwalder, K., Seiler, E.: Gauge field theories on a lattice. Ann. Phys.110, 440 (1978) · doi:10.1016/0003-4916(78)90039-8
[15] Glimm, J., Jaffe, A.: Quantum physics - a functional integral point of view. Berlin, Heidelberg, New York: Springer 1981 · Zbl 0461.46051
[16] Szlachanyi, K.: Non-local charged fields and the phases of theZ(2) Higgs model. KFKI-1984-47
[17] Fröhlich, J., Simon, B., Spencer, T.: Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys.50, 79 (1976) · doi:10.1007/BF01608557
[18] Szlachanyi, K.: Testing confinement by means of non-local field. In Proc. of the International Europhysics Conference on High Energy Physics, Brighton 1983
[19] Kennedy, T., King, C.: Symmetry breaking in the lattice abelian Higgs model. Phys. Rev. Lett.55, 776 (1985); Spontaneous symmetry breakdown in the abelian Higgs model. Commun. Math. Phys.104, 327 (1986) · Zbl 0593.46061 · doi:10.1103/PhysRevLett.55.776
[20] Borgs, C., Nill, F.: Symmetry breaking in Landau gauge. Commun. Math. Phys.104, 349 (1986) · Zbl 0593.46062 · doi:10.1007/BF01211600
[21] Borgs, C., Nill, F.: Gribov copies and absence of spontaneous symmetry breaking in compactU(1) lattice Higgs models. Nucl. Phys. B270 [FS16], 92 (1986) · doi:10.1016/0550-3213(86)90546-8
[22] Fradkin, E., Shenker, S.H.: Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D19, 3682 (1979)
[23] Seiler, E.: Gauge theories as a problem of constructive quantum field theory and statistical mechanics. Lecture Notes in Physics, Vol. 159. Berlin, Heidelberg, New York: Springer 1982
[24] Buchholz, D., Fredenhagen, K.: Locality and the structure of particle states. Commun. Math. Phys.84, 1 (1982) · Zbl 0498.46061 · doi:10.1007/BF01208370
[25] Marat, R., Miracle-Sole, S.: On the statistical mechanics of the gauge invariant Ising model. Commun. Math. Phys.67, 233 (1979) · doi:10.1007/BF01238846
[26] Ruelle, D.: Statistical mechanics. New York, Amsterdam: Benjamin 1969 · Zbl 0177.57301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.