×

Pointwise convergence theorems in \(L_ 2\) over a von Neumann algebra. (English) Zbl 0613.46056

Let M be a von Neumann algebra with a faithful normal state \(\phi\). We consider the Hilbert space \(H=L_ 2(M,\phi)\) (the completion of M under the norm \(x\mapsto \phi (x^*x)^{1/2})\). In this space we introduce a notion of the almost sure convergence which coincides with the usual almost everywhere convergence in the case \(M=L_{\infty}\) (over a probability space).
Using this type of convergence we prove an individual ergodic theorem for unitary operators in H induced by *-automorphisms of M. We also give some (almost sure) asymptotic formulae for the Cesàro means and the ergodic Hilbert transform of a unitary operator in H. A non-commutative extension of the Rademacher-Menshov theorem is proved as well.

MSC:

46L51 Noncommutative measure and integration
46L53 Noncommutative probability and statistics
46L54 Free probability and free operator algebras
46L55 Noncommutative dynamical systems
28D05 Measure-preserving transformations
81P20 Stochastic mechanics (including stochastic electrodynamics)
60F15 Strong limit theorems

References:

[1] Alexits, G.: Convergence problems of orthogonal series. New York-Oxford-Paris: Pergamon Press 1961 · Zbl 0098.27403
[2] Cotlar, M.: A unified theory of Hilbert transform and ergodic theorems. Rev. Mat. Cuyana1, 105-167 (1955)
[3] Dang-Ngoc, N.: Pointwise convergence of martingales in von Neumann algebras. Isr. J. Math.34, 273-280 (1979) · Zbl 0446.60028 · doi:10.1007/BF02760608
[4] Duncan, R.: Pointwise convergence theorems for selfadjoint and unitary contractions. Ann. Probab.5, 622-626 (1977) · Zbl 0368.40001 · doi:10.1214/aop/1176995773
[5] Gaposhkin, V.F.: Criteria of the strong law of large numbers for some classes of stationary processes and homogeneous random fields (Russian). Theory Probab. Appl.22, 295-319 (1977)
[6] Goldstein, M.S.: Theorems in almost everywhere convergence in von Neumann algebras (Russian). J. Oper. Theory6, 233-311 (1981) · Zbl 0488.46053
[7] Goldstein, S., ?uczak, A.: On the Rademacher-Menshov theorem in von Neumann Algebras. To appear in Studia Sci. Math. Hung. · Zbl 0665.46050
[8] Jajte, R.: Strong limit theorems in non-commutative probability, Lect. Notes in Math. No.1110. Berlin-Heidelberg-New York: Springer 1985 · Zbl 0554.46033
[9] Kümmerer, B.: A non-commutative individual ergodic theorem. Invent Math.46, 136-145 (1978) · Zbl 0379.46060
[10] Lance, E.C.: Ergodic theorems for convex sets and operator algebras. Invent. Math.37, 201-214 (1976) · Zbl 0338.46054 · doi:10.1007/BF01390319
[11] Lance, E.C.: Martingale convergence in von Neumann algebras. Math. Proc. Camb. Philos. Soc.84, 47-56 (1978) · Zbl 0398.46051 · doi:10.1017/S0305004100054864
[12] Petersen, K.: Another proof of the existence of the ergodic Hilberr transform. Proc. Am. Math. Soc.88, 39-43 (1983) · Zbl 0521.28014 · doi:10.1090/S0002-9939-1983-0691275-2
[13] Petersen, K.: Ergodic theory. Cambridge-London-New York: Cambridge University Press 1985 · Zbl 0507.28010
[14] Petz, D.: Ergodic theorems in von Neumann algebras. Acta Sci. Math.46, 329-343 (1983) · Zbl 0535.46043
[15] Petz, D.: Quasi-uniform ergodic theorems in von Neumann algebras. Bull. Lond. Math. Soc.16, 151-156 (1984) · Zbl 0535.46042 · doi:10.1112/blms/16.2.151
[16] Sinai, Y.G., Anshelevich, V.V.: Some problems of non-commutative ergodic theory (Russian). Russian Math. Surv.31, 157-174 (1976) · Zbl 0365.46053 · doi:10.1070/RM1976v031n04ABEH001561
[17] Stein, E.M.: Topics in harmonic analysis. Ann. Math. Stud. No.63. Princeton: University Press 1980
[18] Takesaki, M.: Theory of operator algebras I. Berlin-Heidelberg-New York: Springer 1979 · Zbl 0436.46043
[19] Yeadon, F.J.: Ergodic theorems for semifinite von Neumann algebras I. J. London. Math. Soc.2 (16), 326-332 (1977) · Zbl 0369.46061 · doi:10.1112/jlms/s2-16.2.326
[20] Yeadon, F.J.: Ergodic theorems for semifinite von Neumann algebras II. Math. Proc. Camb., Phil. Soc.88, 135-147 (1980) · Zbl 0466.46056 · doi:10.1017/S0305004100057418
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.