×

Poisson integrals of regular functions. (English) Zbl 0613.31005

Let \(C_ p^{\alpha}\) be the Banach space of \(L^ p\)-functions, introduced by A. P. Calderon and R. Scott [Stud. Math. 62, 75-92 (1978; Zbl 0399.46031)] and extensively discussed by R. A. Devore and R. C. Sharpley [Mem. Am. Math. Soc. 293 (1984; Zbl 0529.42005)]. The author defines a proper closed subspace \(F_ p^{\alpha}\subset C_ p^{\alpha}\) by an asymptotic condition and studies this space in some detail; in particular \(F_ p^{\alpha}\) contains the spaces of Bessel potentials of \(L^ p\)-functions, \(1<p<\infty\), and of functions in the local Hardy space \(h^ 1\). Tangential convergence in the special case of Bessel potentials is established by A. Nagel, W. Rudin and J. H. Shapiro [Ann. Math., II. Ser. 116, 331-360 (1982; Zbl 0531.31007)]. Here tangential convergence of Poisson integrals a.e. through appropriate approach regions, depending on \(\alpha\) and p, is proved for \(f\in F_ p^{\alpha}\). Furthermore it is shown, that the corresponding tangential maximal functions are of strong p-type, \(p\geq 1\).
Reviewer: L.Neckermann

MSC:

31B25 Boundary behavior of harmonic functions in higher dimensions
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] David R. Adams, Quasi-additivity and sets of finite \?^{\?}-capacity, Pacific J. Math. 79 (1978), no. 2, 283 – 291. · Zbl 0399.31006
[2] David R. Adams, On the existence of capacitary strong type estimates in \?\(^{n}\), Ark. Mat. 14 (1976), no. 1, 125 – 140. · Zbl 0325.31008 · doi:10.1007/BF02385830
[3] N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385 – 475 (English, with French summary). · Zbl 0102.32401
[4] Alberto-P. Calderón and Ridgway Scott, Sobolev type inequalities for \?&gt;0, Studia Math. 62 (1978), no. 1, 75 – 92. · Zbl 0399.46031
[5] A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171 – 225. · Zbl 0099.30103
[6] Lennart Carleson, Selected problems on exceptional sets, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. · Zbl 0189.10903
[7] Björn E. J. Dahlberg, Regularity properties of Riesz potentials, Indiana Univ. Math. J. 28 (1979), no. 2, 257 – 268. · Zbl 0413.31003 · doi:10.1512/iumj.1979.28.28018
[8] Ronald A. DeVore and Robert C. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc. 47 (1984), no. 293, viii+115. · Zbl 0529.42005 · doi:10.1090/memo/0293
[9] José R. Dorronsoro, A characterization of potential spaces, Proc. Amer. Math. Soc. 95 (1985), no. 1, 21 – 31. · Zbl 0577.46035
[10] Kurt Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), no. 1, 77 – 102. · Zbl 0437.31009 · doi:10.7146/math.scand.a-11827
[11] Lars Inge Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505 – 510. · Zbl 0283.26003
[12] Norman G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes., Math. Scand. 26 (1970), 255 – 292 (1971). · Zbl 0242.31006 · doi:10.7146/math.scand.a-10981
[13] Yoshihiro Mizuta, On the boundary limits of harmonic functions with gradient in \?^{\?}, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 1, 99 – 109 (English, with French summary). · Zbl 0522.31009
[14] Alexander Nagel, Walter Rudin, and Joel H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math. (2) 116 (1982), no. 2, 331 – 360. · Zbl 0531.31007 · doi:10.2307/2007064
[15] Alexander Nagel and Elias M. Stein, On certain maximal functions and approach regions, Adv. in Math. 54 (1984), no. 1, 83 – 106. · Zbl 0546.42017 · doi:10.1016/0001-8708(84)90038-0
[16] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[17] Hans Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983. · Zbl 0546.46028
[18] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.