×

A Plancherel theory for Newton spaces. (English) Zbl 0613.30035

The Newton polynomials are defined as the coefficients in the expansion \[ (1-w)^ z=\sum^{\infty}_{n=0}N_ n(z)w^ n \] where \(| w| <1\) and z is arbitrary. Let \(w_ h(t)=e^{-t}t^{h-1}\) on (0,\(\infty)\), h a positive real number and \(L^ 2(w_ h)\) the weighted Lebesgue space. The weighted Mellin transform is a mapping from \(L^ 2(w_ h)\) onto a linear space \({\mathcal N}_ h\) of holomorphic functions on the half-plane Re z\(>-h/2\). Under some inner product using the weighted Mellin transform, \({\mathcal N}_ h\) is a Hilbert space which contains the Newton polynomials as a complete orthogonal set. \({\mathcal N}_ h\) is called a Newton space. The inversion of the weighted Mellin transform yields a kind of Plancherel theory for the Newton spaces. In this paper the Plancherel theorem is proved.
Summary: The purpose of this paper is to provide a selfcontained introduction to Newton spaces and explore the associated function theory. It is shown that Newton spaces have certain properties reminiscent of Hardy classes and Fourier analysis. However, the function theory is different from that of Hardy classes and more closely related to the calculus of finite differences. The calculation of shift operators is equivalent to the problem of giving an analytical solution of the functional equation \(F(z+1)-F(z)=G(z)\). Connections are also shown with integer valued functions and singularities of analytic functions.
Reviewer: T.Nakazi

MSC:

30D55 \(H^p\)-classes (MSC2000)
42A99 Harmonic analysis in one variable
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] L. de Branges,Square Summable Power Series, Springer-Verlag, in preparation. · Zbl 0153.39602
[2] L. de Branges and D. Trutt, ?Quantum Cesàro operators,?Topics in Functional Analysis (Essays dedicated to M. G. Kreîn), eds. I. Gohberg and M. Kac,Adv. in Math. Suppl. Studies, vol. 3, pp. 1-24, Academic Press, New York, 1978. · Zbl 0457.47022
[3] L. de Branges and D. Trutt, ?Orthogonal Newton polynomials,?Adv. in Math. 37 (1980), 251-271. · Zbl 0466.33009 · doi:10.1016/0001-8708(80)90036-5
[4] R. C. Buck, ?A class of entire functions,?Duke Math. J. 13 (1946), 541-559. · Zbl 0060.22405 · doi:10.1215/S0012-7094-46-01346-4
[5] R. C. Buck, ?Integral valued entire functions,?Duke Math. J. 15 (1948), 879-891. · Zbl 0033.36402 · doi:10.1215/S0012-7094-48-01578-6
[6] P. Dienes,The Taylor Series, Oxford University Press, Oxford, 1931; reprinted by Dover, New York, 1957. · JFM 57.0339.10
[7] P. Duren,Theory of H P Spaces, Academic Press, New York, 1970. · Zbl 0215.20203
[8] A. Erdélyi, et al.,Higher Transcendental Functions, vols. 1, 2, McGraw-Hill, New York, 1953; · Zbl 0051.30303
[9] ?, et al.,Tables of Integral Transforms, vol. 2, McGraw-Hill, New York, 1954.
[10] E. Hille,Analytic Function Theory, vol. II, second ed. Chelsea, New York, 1973. · Zbl 0273.30002
[11] C. Jordan,Calculus of Finite Differences, Chelsea, New York, 1979. · Zbl 0060.12309
[12] E. Kay, H. Soul, and D. Trutt, ?Some subnormal operators and hypergeometric kernel functions,?J. Math. Anal. Appl. 53 (1976), 237-242. · Zbl 0339.47017 · doi:10.1016/0022-247X(76)90107-4
[13] E. Kay and D. Trutt, ?Newton spaces of analytic functions,?J. Math. Anal. Appl. 60 (1978), 325-328. · Zbl 0375.46030 · doi:10.1016/0022-247X(77)90022-1
[14] K. Klopfenstein, ?A note on Hilbert spaces of factorial series,?Indiana U. Math. J. 25 (1977), 1073-1081. · doi:10.1512/iumj.1976.25.25086
[15] T. L. Kriete and D. Trutt, ?The Cesàro operator in ?2 is subnormal,?Amer. J. Math. 93 (1971), 215-225. · Zbl 0235.46022 · doi:10.2307/2373458
[16] T. L. Kriete and D. Trutt, ?On the Cesàro operator,?Indiana U. Math. J. 24 (1974), 197-214. · Zbl 0297.47025 · doi:10.1512/iumj.1974.24.24017
[17] L. M. Milne-Thomson,The Calculus of Finite Differences, Chelsea, New York, 1981. · Zbl 0477.39001
[18] J. von Neumann, ?Zur Theorie der unbeschränkten Matrizen,?J. f. Math. 161 (1929), 208-236; Collected Works, vol. II, no. 3. · JFM 55.0825.01
[19] N. E. Nörlund, ?Mémoire sur le calcul aux différences finies,?Acta Math. 44 (1923), 71-211. · JFM 49.0322.02 · doi:10.1007/BF02403922
[20] N. E. Nörlund,Vorlesungen über Differenzenrechnung, Chelsea, New York, 1954.
[21] R. E. A. C. Paley and N. Wiener,Fourier Transforms in the Complex Domain, Amer. Math. Soc. Coll. Publ., vol. 19, New York, 1934. · Zbl 0011.01601
[22] M. Rosenblum and J. Rovnyak, ?Restrictions of analytic functions, II,?Proc. Amer. Math. Soc. 51 (1975), 335-343. · Zbl 0317.30033 · doi:10.1090/S0002-9939-1975-0399925-0
[23] M. Rosenblum and J. Rovnyak,Hardy Classes and Operator Theory, Oxford University Press, New York, 1985. · Zbl 0586.47020
[24] G. Szegö,Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Coll. Publ., vol. 23, Providence, R. I., 1975.
[25] E. C. Titchmarsh,Theory of Fourier Integrals, 2nd ed., Oxford University Press, London, 1948. · Zbl 0031.03202
[26] C. van Winter, ?Fredholm equations on a Hilbert space of analytic functions,?Trans. Amer. Math. Soc. 162 (1971), 103-139. · doi:10.1090/S0002-9947-1971-0417849-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.