×

On the symmetry lines of the standard mapping. (English) Zbl 0612.58023

The Taylor and Chirikov standard mapping is used as a model to represent the dynamics of non-integrable systems by means of the Poincaré section of the trajectories intersecting a fixed plane of the phase space. This study is based on a systematic use of the decomposition of the standard mapping in a product of two involutions, forming a group including the iterates of the mapping and their inverses. The symmetry lines of the family of involutions determine the position of the periodic points and explain the onset of new chains of periodic points produced by the winding of the symmetry lines around the stable periodic points.

MSC:

37B99 Topological dynamics
26A18 Iteration of real functions in one variable
Full Text: DOI

References:

[1] Whittaker, E. T., Analytical Dynamics of Particles and Rigid Bodies (1937), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0061.41806
[2] Poincaré, H., Les Méthodes Nouvelles de la Mécanique Celeste (1957), Dover: Dover New York · Zbl 0079.23801
[3] Goldstein, H., Classical Mechanics (1980), Addison-Wesley: Addison-Wesley Cambridge, MA · Zbl 0491.70001
[4] Chirikov, B. V., Phys. Rep., 52, 263 (1979)
[5] Arnold, V. I., Mathematical Methods of Classical Mechanics (1978), Springer: Springer New York · Zbl 0386.70001
[6] De Vogelaere, R., (Lefshetz, S., Contribution to the Theory of Nonlinear Oscillations, vol. IV (1958), Princeton Univ. Press: Princeton Univ. Press Princeton), 53-84 · Zbl 0088.06601
[7] Greene, J. M., (Month, M.; Herrera, J. C., Non-linear Dynamics and the Beam-Beam Interaction (1979), AIP: AIP New York), 257-271 · Zbl 0491.73062
[8] González, D. L.; Piro, O., Phys. Rev. Lett., 50, 870 (1983)
[9] Green, J. M., J. Math. Phys., 9, 760 (1968) · Zbl 0187.12103
[10] (Dynamical Systems (1927), AMS: AMS Providence, RI), 186 · Zbl 1010.01520
[11] Greene, J. M., J. Math. Phys., 20, 1183 (1979)
[12] MacKay, R. S., Renormalization in Area-Preserving Maps, (Ph.D. Thesis (1982), Princeton University) · Zbl 1194.37068
[13] Greene, J. M.; MacKay, R. S.; Vivaldi, F.; Feigenbaum, M. J., Physica, 3D, 468 (1981) · Zbl 1194.37011
[14] Berry, M. V., (Jorna, S., Am. Inst. Phys. Conf. Proc.. Am. Inst. Phys. Conf. Proc., Topics in Nonlinear Dynamics, vol. 46 (1979), AIP: AIP New York), 16
[15] Bountis, T.; Helleman, R. H.G., J. Math. Phys., 22, 1867 (1981) · Zbl 0472.58014
[16] Shenker, S. J.; Kadanoff, L. P., J. of Stat. Phys., 27, 631 (1982) · Zbl 0925.58021
[17] Niven, I.; Zuckerman, H. S., An Introduction to the Theory of Numbers (1966), Wiley: Wiley New York · Zbl 0186.36601
[18] Collet, P.; Eckmann, J. P.; Koch, H., Physica, 3D, 457 (1981) · Zbl 1194.37050
[19] MacKay, R. S., Physica, 7D, 283 (1983) · Zbl 1194.37068
[20] Lyndon, R. C., Groups and Geometry (1985), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0168.28403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.