×

Two-dimensional disturbance travel, growth and spreading in boundary layers. (English) Zbl 0608.76043

The nonlinear growth of Tollmien-Schlichting disturbances in a boundary layer is considered as an initial-value problem, for the unsteady two- dimensional triple deck, and computational and analytical solutions are presented.
On the analytical side, the nonlinear properties of relatively high- frequency/high-speed disturbances are discussed. The disturbances travel at the group velocity and their amplitude is controlled by a generalized cubic Schrödinger equation, during a first stage of the nonlinear development. Computationally, two forms of numerical solution of the triple-deck problem, one spectral, the other finite-difference, are given. The results from each form tend to support the conclusions of the high-frequency analysis for initial-value problems, and recent calculations of the two-dimensional unsteady Navier-Stokes equations also provide some backing. One implication is that the unsteady planar interacting-boundary-layer equations, or a composite version, can capture much of the physics involved in the beginnings of boundary-layer transition although, again, three-dimensionality is undoubtedly an important element which will need to be incorporated eventually.

MSC:

76E30 Nonlinear effects in hydrodynamic stability
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76M99 Basic methods in fluid mechanics
76F99 Turbulence
35Q99 Partial differential equations of mathematical physics and other areas of application
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevLett.49.458 · doi:10.1103/PhysRevLett.49.458
[2] Messiter, Trans. ASME 50 pp 1104– (1983) · Zbl 0533.76039 · doi:10.1115/1.3167193
[3] Gajjar, J. Fluid Mech. 157 pp 53– (1985)
[4] Duck, J. Fluid Mech. 160 pp 465– (1985)
[5] Tutty, J. Fluid Mech. 362 pp 27– (1986)
[6] Stuart, Proc. R. Soc. Lond. 362 pp 27– (1978)
[7] DOI: 10.1017/S002211206200107X · Zbl 0111.39101 · doi:10.1017/S002211206200107X
[8] DOI: 10.1017/S0022112071001733 · Zbl 0222.76045 · doi:10.1017/S0022112071001733
[9] Bullough, Phys. Lett. 91 A pp 98– (1982) · doi:10.1016/0375-9601(82)90358-9
[10] DOI: 10.1017/S0022112084001889__S0022112084001889 · doi:10.1017/S0022112084001889__S0022112084001889
[11] Bretherton, Phys. Lett. 96 A pp 152– (1983) · doi:10.1016/0375-9601(83)90491-7
[12] DOI: 10.1016/0045-7930(82)90018-4 · Zbl 0516.76043 · doi:10.1016/0045-7930(82)90018-4
[13] Benney, Stud. Appl. Math. 54 pp 181– (1975) · Zbl 0332.76028 · doi:10.1002/sapm1975543181
[14] Smith, Proc. R. Soc. Lond. 399 pp 25– (1985)
[15] DOI: 10.1017/S002211206700045X · Zbl 0144.47101 · doi:10.1017/S002211206700045X
[16] DOI: 10.1146/annurev.fl.18.010186.001213 · doi:10.1146/annurev.fl.18.010186.001213
[17] DOI: 10.1137/0127034 · Zbl 0292.35047 · doi:10.1137/0127034
[18] DOI: 10.1063/1.1692775 · Zbl 0213.54402 · doi:10.1063/1.1692775
[19] DOI: 10.1017/S0022112062000014 · Zbl 0131.41901 · doi:10.1017/S0022112062000014
[20] DOI: 10.1017/S0022112076002759 · Zbl 0353.76028 · doi:10.1017/S0022112076002759
[21] Hocking, Proc. R. Soc. Lond. 326 pp 289– (1972)
[22] Hastings, MRC Rep. 397 pp 53– (1978)
[23] Gatski, NASA Tech. Paper 397 pp 53– (1983)
[24] DOI: 10.1017/S0022112076002747 · doi:10.1017/S0022112076002747
[25] Smith, Proc. R. Soc. Lond. 368 pp 573– (1979)
[26] Smith, Proc. R. Soc. Lond. 366 pp 91– (1979)
[27] Ryzhov, J. Méc. 19 pp 561– (1980)
[28] DOI: 10.1103/PhysRevLett.51.2171 · doi:10.1103/PhysRevLett.51.2171
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.