×

Kinematic hardening of trusses. (English) Zbl 0604.73031

Polycrystalline materials are modelled using plastic trusses. The rods of the truss simulate the slip systems of a single crystal while the geometry of the truss controls the interaction between the different slip systems. For calculations of the evolution of the yield locus in the space of the nodal forces, i.e. in the generalized stress space, due to the geometric variation of the truss, (kinematic hardening) a ”direct” formulation is looked for, in which only quantities of the stress space are involved. It is found that for an adequate approach, besides the nodal forces and the nodal velocities also moments and rotations of the rods have to be introduced. If this result would be transferred to a polycrystal then it would mean that kinematic hardening could be described, in a sensible way by means of a Cosserat continuum only. Comparing for a truss the yield loci of the direct formulation with yield loci calculated by an indirect method a good agreement is achieved.

MSC:

74C99 Plastic materials, materials of stress-rate and internal-variable type

Citations:

Zbl 0337.73022
Full Text: DOI

References:

[1] Melan, E.; Zur Plastizit?t des r?umlichen Kontinuums. Ing. Arch. 9 (1938) 116-126 · JFM 64.0840.01 · doi:10.1007/BF02084409
[2] I?linskij, Yu.: General theory of plasticity with linear strain hardening. Ukr. Mat. Zh. 6 (1954) 314-324
[3] Prager, W.: The theory of plasticity: A survey of recent achievements (James Clayton Lecture). Proc. Inst. Mech. Eng. London 169 (1955) 41-57 · doi:10.1243/PIME_PROC_1955_169_015_02
[4] Backhaus, G.: Vergleich einiger Ans?tze zur Erfassung der Verformungsanisotropie und eine einfache Spannungs-Verformungs-Beziehung. Z. Angew. Math. Mech. 56 (1976) 513-522 · Zbl 0347.73027 · doi:10.1002/zamm.19760561202
[5] Besdo, D.: Zur anisotropen Verfestigung anfangs isotroper starrplastischer Medien. Z. Angew. Math. Mech. 51 (1971) T97-T98
[6] Tanaka, M.; Miyagawa, Y.: On generalized kinematic hardening theory of plasticity. Ing. Arch. 44 (1975) 255-268 · Zbl 0337.73022 · doi:10.1007/BF00534484
[7] Weng, G. J.; Phillips, A.: An investigation of yield surfaces based on dislocation mechanics. Int. J. Eng. Sci. 15 (1977) 45-59, 61-70 · Zbl 0346.73065 · doi:10.1016/0020-7225(77)90068-4
[8] Mr?z, Z.: On generalized kinematic hardening rule with Memory of maximal prestress. J. Mec. Appl. 5 (1982) 241-260
[9] Lippmann, H.: Mechanik des plastischen Flie?ens. Berlin, Heidelberg, New York: Springer 1981 · Zbl 0475.73023
[10] Lippmann, H.; Winter, W.: Elastisch-plastische Stabwerke mit kinematischer Verfestigung als Modell f?r vielkristallines Werkstoffverhalten unter Wechselbeanspruchung (in Vorbereitung)
[11] Winter, W.: Elastisch-plastische Stabwerke mit kinematischer Verfestigung als Modell f?r vielkristallines Werkstoffverhalten unter Wechselbeanspruchung. Dissertation, Techn. Univ. M?nchen 1984
[12] Burbach, J.: Zur Physik der Flie?orte und Flie?ortkurven von Vielkristallen. Z. Metallkd. 76 (1985) 64-72
[13] Lippmann, H.: Eine Cosserat-Theorie des plastischen Flie?ens. Acta Mech. 8 (1969) 255-284 · Zbl 0188.58703 · doi:10.1007/BF01182264
[14] Besdo, D.: Ein Beitrag zur nichtlinearen Theorie des Cosserat-Kontinuums. Acta Mech. 20 (1974) 105-131 · Zbl 0294.73003 · doi:10.1007/BF01374965
[15] Shield, R. T.; Ziegler, H.: On Prager’s hardening rule. Z. Angew. Math. Phys. 9 (1958) 260-276 · Zbl 0082.39002 · doi:10.1007/BF02033030
[16] Ziegler, H.: A modification of Prager’s hardening rule. Quart. Appl. Math. 17 (1959) 55-65 · Zbl 0086.18704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.