×

The cardinality of subdirectly indecomposable systems in quasivarieties. (English. Russian original) Zbl 0602.08006

Algebra Logic 25, 1-34 (1986); translation from Algebra Logika 25, No. 1, 3-50 (1986).
The structural characterization of the residually small (r.s.) varieties obtained by W. Taylor [Algebra Univers. 2, 33-53 (1972; Zbl 0263.08005)] is generalized to quasivarieties. Using this generalization the author proves that the quasivarieties of abelian groups and of unars are r.s.
The syntactic characterization of the r.s. varieties, which is contained in Taylor’s paper mentioned, is generalized to quasivarieties. Thus it is given a negative answer to a question of J. T. Baldwin and J. D. Berman [Algebra Univers. 5, 379-389 (1975; Zbl 0348.08002)].
Let \(\gamma\) be a cardinal. A quasivariety K is said to be residually \(<\gamma\) iff \(| A| <\gamma\) for any subdirectly K-indecomposable system. K is said to be residually finite (countable) iff it is residually \(<\omega\) \((<\omega_ 1)\). The author finds a syntactic characterization of the residually \(<\gamma\) quasivarieties for any \(\gamma\). Thus he solves the problem of syntactic characterization of the residually finite and the residually countable varieties posed by Baldwin and Berman.
The Hanf number for subdirect indecomposability in quasivarieties is found. In assuming GCH there is given a characterization of the spectra of powers of subdirectly indecomposable systems in quasivarieties of uncountable signature. These results are closely related to some results of R. McKenzie and S. Shelah [Proc. Symp. Pure Math. 25, 53- 74 (1974; Zbl 0316.02057)].
The theorem of R. Magari [Ann. Univ. Ferrara, Nov. Ser. 14, 1-4 (1969; Zbl 0247.08016)] on existence of prime algebras in varieties is generalized to universally axiomatized classes. In conclusion the author insists that the algebraic characterization of quasivarieties (lemma 1.2) was originally indicated (”apparently”) by the author and V. I. Tumanov in 1982.
Reviewer: S.R.Kogalovskij

MSC:

08C15 Quasivarieties
03C60 Model-theoretic algebra

References:

[1] A. I. Budkin and V. A. Gorbunov, ”On the theory of quasivarieties of algebraic systems,” Algebra Logika,14, No. 2, 123–142 (1975). · Zbl 0317.08003
[2] A. A. Vinogradov, ”Quasivarieties of Abelian groups,” Algebra Logika,4, No. 6, 15–19 (1965).
[3] V. A. Gorbunov and V. I. Tumanov, ”The structure of lattices of quasivarieties,” in: Mathematical Logic and the Theory of Algorithms, Trudy Inst. Mat. Sib Otd. Akad. Nauk SSSR, 2, Nauka, Novosibirsk (1982), pp. 12–44. · Zbl 0523.08008
[4] V. A. Gorbunov, ”On the axiomatizability of replicative classes,” Mat. Zametki,35, No. 5, 641–645 (1984).
[5] V. A. Gorbunov, ”The characterization of residually small quasivarieties,” Dokl. Akad. Nauk SSSR,275, No. 2, 293–296 (1984). · Zbl 0588.08008
[6] V. A. Gorbunov, ”The cardinality of simple algebras in universally axiomatizable classes,” in: Seventh All-Union Conference on Mathematical Logic, Novosibirsk (1–84), p. 44.
[7] Yu. L. Ershov and E. A. Palyutin, Mathematical Logic [in Russian], Nauka, Moscow (1979).
[8] V. K. Kartashov, ”Quasivarieties of unars,” Mat. Zametki,27, No. 1, 1–7 (1980). · Zbl 0446.08007
[9] C. G. Chang and H. J. Keisler, Model Theory, North-Holland, Amsterdam (1973).
[10] A. I. Mal’tsev, ”On the general theory of algebraic systems,” Mat. Sb.,35, No. 1, 3–20 (1954).
[11] A. I. Mal’tsev, ”Subdirect products of models,” Dokl. Akad. Nauk SSSR,109, No. 2, 264–266 (1956).
[12] A. I. Mal’tsev, ”Several remarks on quasivarieties of algebraic systems,” Algebra Logika,5, No. 3, 3–9 (1966).
[13] A. I. Mal’tsev (A. I.\^Mal’cev), Algebraic Systems, Springer-Verlag, New York (1973).
[14] B. H. Neumann, ”Group properties of countable character,” in: Selected Questions of Algebra and Logic (collection dedicated to the memory of A. I. Mal’cev) Nauka, Novosibirsk (1973), pp. 197–204.
[15] J. T. Baldwin, ”The number of subdirectly irreducible algebras in a variety. II,” Algebra Univ.,11, 1–6 (1980). · Zbl 0469.08004 · doi:10.1007/BF02483077
[16] J. T. Baldwin and J. D. Berman, ”The number of subdirectly irreducible algebras in a variety,” Algebra Univ.,5, 379–389 (1975). · Zbl 0348.08002 · doi:10.1007/BF02485271
[17] B. Banaschewski and E. Nelson, ”Equational compactness in equational classes of algebras,” Algebra Univ.,2, 152–165 (1972). · Zbl 0258.08005 · doi:10.1007/BF02945023
[18] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York (1981). · Zbl 0478.08001
[19] C. C. Chang, ”Some remarks on the model theory of infinitary languages,” Lect. Notes Math., No. 72, 36–63 (1968). · Zbl 0175.26802
[20] B. Csakany, ”Varieties whose algebras have no idempotent elements,” Colloq. Math.,35, No. 2, 201–203 (1976). · Zbl 0331.08002
[21] P. Erdos and R. Rado, ”A partition calculus in set theory,” Bull. Am. Math. Soc.,62, 427–489 (1956). · Zbl 0071.05105 · doi:10.1090/S0002-9904-1956-10036-0
[22] R. Freese and R. McKenzie, ”Residually small varieties with modular congruence lattices,” Trans. Am. Math. Soc.,264, No. 2, 419–430 (1981). · Zbl 0472.08008 · doi:10.1090/S0002-9947-1981-0603772-9
[23] G. Gratzer, Universal Algebra, Springer-Verlag, New York (1979).
[24] G. Gratzer and H. Lakser, ”A note on the implicational class generated by a class of structures,” Can. Math. Bull.,16, No. 4, 603–605 (1973). · Zbl 0299.08007 · doi:10.4153/CMB-1973-100-4
[25] W. Hanf, ”Incompactness in languages with infinitely long expressions,” Fund. Math.,53, 309–324 (1964). · Zbl 0207.30201
[26] V. Harnik and M. Makkai, ”A tree argument in infinitary model theory,” Proc. Am. Math. soc.,67, No. 2, 309–314 (1977). · Zbl 0384.03019 · doi:10.1090/S0002-9939-1977-0472506-8
[27] A. Hulanicki, ”The structure of the factor group of the unrestricted sum by the restricted sum of Abelian groups,” Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys.,10, 77–80 (1962). · Zbl 0107.26003
[28] B. Jonsson, ”Congruence varieties,” Algebra Univ.,10, 355–394 (1980). · Zbl 0438.08003 · doi:10.1007/BF02482916
[29] E. W. Kiss, L. Marki, P. Pröhle, and W. Tholen, ”Categorical algebraic properties. A compendium on amalgamation, congruence extension, epimorphisms, residual smallness, and injectivity,” Stud. Sci. Math. Hung.,18, 79–141 (1983). · Zbl 0549.08001
[30] J. Kollar, ”Congruences and one element subalgebras,” Algebra Univ.,9, 266–267 (1979). · Zbl 0407.08002 · doi:10.1007/BF02488038
[31] H. Lakser, ”Principal congruences in N-permutable varieties,” Algebra Unvi.,14, 64–67 (1982). · Zbl 0492.08007 · doi:10.1007/BF02483908
[32] R. Magari, ”Una dimostrazione del fatto che ogni varieta ammette algebre semplici,” Ann. Univ. Ferrara, Sez VII,14, No. 1, 1–4 (1969). · Zbl 0247.08016
[33] R. McKenzie, ”Residually small varieties of semigroups,” Algebra Univ.,13, No. 2, 171–201 (1981). · Zbl 0475.20051 · doi:10.1007/BF02483833
[34] R. McKenzie and S. Shelah, ”The cardinals of simple models for universal theories,” in: Proceedings of the Tarski Symposium, Berkeley, 1971, Proc. Sympos. Pure Math. Vol. 25, Am. Math. Soc., Providence (1974), pp. 53–74.
[35] M. Morley, ”Omitting classes of elements,” in: Theory of Models, Proc. 1963 Int. Symp. (Berkeley), North-Holland, Amsterdam (1965), pp. 265–273. · Zbl 0168.24902
[36] E. Nelson, ”Not every equational class of infinitary algebras contains a simple algebra,” Colloq. Math.,30, 27–30 (1974). · Zbl 0283.08003
[37] R. W. Quackenbush, ”Equational classes generated by finite algebras,” Algebra Univ.,1, 265–266 (1971). · Zbl 0231.08004 · doi:10.1007/BF02944989
[38] S. Shelah, ”Classification theory for nonelementary classes I: the number of uncountable models of \(\psi \in L_{\omega _1 \omega } \) ,. Part A,” Israel J. Math.,46, No. 3, 212–240 (1983). · Zbl 0552.03019 · doi:10.1007/BF02761954
[39] W. Taylor, ”Some constructions of compact algebras,” Ann. Math. Logic 3 No. 4, 395–435 (1971). · Zbl 0239.08003
[40] W. Taylor, ”Residually small varieties,” Algebra Univ.,2, 33–63 (1972). · Zbl 0263.08005 · doi:10.1007/BF02945005
[41] S. Tulipani, ”The Hanf number for classes of algebras whose largest congruence is always finitely generated,” Algebra Univ.,9, 221–228 (1979). · Zbl 0411.03023 · doi:10.1007/BF02488033
[42] B. Weglorz and A. Wojciechowska, ”Summability of pure extensions of relational structures,” Colloq. Math.,19, 27–35 (1968). · Zbl 0184.01303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.