×

On the lengths of closed geodesics on almost round spheres. (English) Zbl 0595.53049

The following theorem is proved: For every \(\epsilon >0\) there is a \(\delta =(\epsilon,n)>0\) such that every prime closed geodesic on a Riemannian sphere \((S^ n,g)\) with curvature between 1-\(\delta\) and \(1+\delta\) has length between \(2\pi\)-\(\epsilon\) and \(2\pi +\epsilon\) or else larger than 1/\(\epsilon\). This was proved for \(n=2\) in [W. Ballmann, Invent. Math. 71, 593-597 (1983; Zbl 0505.53020)] and for general n in the special case of ellipsoids [M. Morse, ”The calculus of variations in the large” (1934; Zbl 0011.02802)]. The proof is based on a result for general flows of independent interest.
Reviewer: K.Grove

MSC:

53C22 Geodesics in global differential geometry
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
53D25 Geodesic flows in symplectic geometry and contact geometry

References:

[1] Abraham, R.: Bumpy metrics. Global analysis. Proc. Symp. Pure Math. XIV, 1-3, Providence, R.I., Am. Math. Soc. 1970 · Zbl 0215.23301
[2] Ballmann, W.: On the lengths of closed geodesics on convex surfaces. Invent. Math.71, 593-597 (1983). · Zbl 0505.53020 · doi:10.1007/BF02095995
[3] Bangert, V.: Geodätische Linien auf Riemannschen Mannigfaltigkeiten. Jahresber. Dtsch. Math.-Ver.87, 39-66 (1985) · Zbl 0565.53028
[4] Besse, A.: Manifolds all of whose geodesics are closed. Berlin-Heidelberg-New York: Springer 1978 · Zbl 0387.53010
[5] Gromoll, D., Klingenberg, W., Meyer, W.: Riemannsche Geometrie im Grossen., Lecture Notes in Mathematics55. Berlin-Heidelberg-New York: Springer 1968, 2nd ed. 1975 · Zbl 0155.30701
[6] Gromoll, D., Meyer, W.: Periodic geodesics on compact Riemannian manifolds. J. Differ. Geom.3, 493-510 (1969) · Zbl 0203.54401
[7] Grove, K., Karcher, H., Ruh, E.: Jacobi fields and Finsler metrics on compact Lie groups with an application to differentiable pinching problems. Math. Ann.211, 7-21 (1974) · doi:10.1007/BF01344138
[8] Hirsch, M.: Differential topology. New York-Heidelberg-Berlin: Springer 1976 · Zbl 0356.57001
[9] Klingenberg, W.: Über riemannsche Mannigfaltigkeiten mit positiver Krümmung. Comment. Math. Helv.35, 47-54 (1961) · Zbl 0133.15005 · doi:10.1007/BF02567004
[10] Klingenberg, W.: Lectures on Closed Geodesics. Grundlehren der mathematischen Wissenschaften Bd.230. Berlin-Heidelberg-New York: Springer 1978 · Zbl 0397.58018
[11] Klingenberg, W.: Riemannian geometry. Studies in Mathematics 1. Berlin-New York: de Gruyter 1982 · Zbl 0495.53036
[12] Morse, M.: Calculus of variations in the large. Am. Math. Soc. Colloq. Publ. vol. 18, Providence R.I., Am. Math. Soc. 1934 · Zbl 0011.02802
[13] Spivak, M.: A comprehensive introduction to differential geometry. Vol. II. Boston: Publish or Perish 1970 · Zbl 0202.52001
[14] Wadsley A.W.: Geodesic foliations by circles. J. Differ. Geom.10, 541-549 (1975) · Zbl 0336.57019
[15] Walter, R.: Differentialgeometrie. Mannheim-Wien-Zürich: Bibliographisches Institut 1978
[16] Walter, W.: Gewöhnliche Differentialgeleichungen. Berlin-Heidelberg-New York: Springer 1972
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.