×

Perfect measurable spaces. (English) Zbl 0593.04002

The paper is concerned with the following (measurable) union problem: let \({\mathcal A}\) be a \(\sigma\)-algebra of subsets of a space X and \(X_ i\in {\mathcal A} (i\in I)\). What conditions on \({\mathcal A}\) and \(X_ i\) guarantee the existence of a subfamily \(X_ i\) (i\(\in J)\) whose union is not measurable, i.e. does not belong to \({\mathcal A}?\) Usually it is assumed that the family \(X_ i (i\in I)\) is point-finite and that \(X_ i\) are small, i.e. belong to some \(\sigma\)-ideal \({\mathcal I}\). Interesting special cases are when \({\mathcal I}\) is the \(\sigma\)-ideal of sets of measure zero for some measure on (X,\({\mathcal A})\) or when X is a topological space and \({\mathcal I}\) is the \(\sigma\)-ideal of meager sets in X.
Satisfactory solutions of the union problem are obtained: (i) for two classes of spaces (X,\({\mathcal A},{\mathcal I})\)- those of perfect and weakly perfect measurable spaces - which are connected to the concept of perfect measures, and (ii) for spaces (X,\({\mathcal A},{\mathcal I})\) which satisfy a Fubini type property and a countability property. This general treatment of the union problem yields most of the results in the literature as special cases.

MSC:

03E15 Descriptive set theory
28A05 Classes of sets (Borel fields, \(\sigma\)-rings, etc.), measurable sets, Suslin sets, analytic sets
Full Text: DOI

References:

[1] Bing, R. H., Metrization of topological spaces, Canad. J. Math., 3, 175-180 (1951) · Zbl 0042.41301
[2] Bing, R. H.; Bledsoe, W. W.; Mauldin, R. D., Sets generated by rectangles, Pacific J. Math., 51, 27-36 (1974) · Zbl 0261.04001
[3] Brzuchowski, J.; Cichon, J.; Grzegorek, E.; Ryll-Nardzewski, C., On the existence of nonmeasurable unions, Bull. Acad. Polon. Sci. Math., 27, 447-448 (1979) · Zbl 0433.28001
[4] Bukovsky, L., Any partition into Lebesgue measure zero sets produces a non-measurable union, Bull. Acad. Polon. Sci. Math., 27, 431-435 (1979) · Zbl 0429.28001
[5] Christensen, J. P.R., Topology and Borel structure (1974), North-Holland: North-Holland Amsterdam · Zbl 0273.28001
[6] Erdös, P.; Rado, R., Intersection theorems for systems of sets, J. London Math. Soc., 35, 85-90 (1960) · Zbl 0103.27901
[7] Ellentuck, E., A new proof that analytic sets are Ramsey, J. Symbolic Logic, 39, 163-165 (1974) · Zbl 0292.02054
[8] Falkner, N., Generalizations of analytic and standard measurable spaces, Math. Scand., 49, 283-301 (1981) · Zbl 0503.54044
[9] Frankiewicz, R.; Gutek, A.; Plewik, S.; Roczniak, J., On the theorem on measurable selectors, Bull. Acad. Polon. Sci. Math., 30, 33-40 (1982) · Zbl 0549.28013
[10] Fremlin, D. H., Measurable functions and almost continuous functions, Manuscripta Math., 33, 387-405 (1981) · Zbl 0459.28010
[11] D.H. Fremlin, Measure-additive coverings and measurable selections, Preprint.; D.H. Fremlin, Measure-additive coverings and measurable selections, Preprint. · Zbl 0491.28002
[12] Fremlin, D. H., Consequences of Martin’s Axiom (1985), Cambridge Univ. Press · Zbl 1156.03050
[13] Frolík, Z.; Holický, P., Decomposability of completely Suslin-additive families, Proc. Amer. Math. Soc., 82, 359-365 (1981) · Zbl 0496.28003
[14] Gardner, R. J., The regularity of Borel measures and Borel measure-compactness, Proc. London Math. Soc., 30, 95-113 (1975) · Zbl 0294.28001
[15] Gnedenko, B. V.; Kolmogorov, A. N., Limit Distributions for Sums of Independent Random Variables (1954), Addison-Wesley: Addison-Wesley Cambridge, MA · Zbl 0056.36001
[16] Haydon, R., On compactness in spaces of measures and measure-compact spaces, Proc. London Math. Soc., 29, 1-16 (1974) · Zbl 0294.28005
[17] Jech, T., Set Theory (1978), Academic Press: Academic Press New York · Zbl 0419.03028
[18] Koumoullis, G., On perfect measures, Trans. Amer. Math. Soc., 264, 521-537 (1981) · Zbl 0469.28010
[19] Koumoullis, G.; Prikry, K., The Ramsey property and measurable selections, J. London Math. Soc., 28, 203-210 (1983) · Zbl 0526.28009
[20] Kuratowski, K., Topology, Vol. I (1966), Academic Press: Academic Press New York · Zbl 0158.40802
[21] Louveau, A.; Simpson, S., A seperable image theorem for Ramsey mappings, Bull. Acad. Polon. Sci. Math., 30, 105-108 (1982) · Zbl 0498.04006
[22] Marczewski, E.; Sikorski, R., Measures in non-separable metric spaces, Colloq. Math., 1, 133-139 (1947-1948) · Zbl 0037.32201
[23] Moran, W., Measures on metacompact spaces, Proc. London Math. Soc., 20, 507-524 (1970) · Zbl 0199.37802
[24] Odell, E., (Lacey, H. E., Applications of Ramsey Theorems to Banach Space Theory (1980), Univ. of Texas Press: Univ. of Texas Press Austin and London), 175-180 · Zbl 0468.46009
[25] Oxtoby, J. C., Measure and Category (1970), Springer: Springer Berlin · Zbl 0217.09201
[26] Pachl, J., Two classes of measures, Colloq. Math., 42, 331-340 (1979) · Zbl 0428.28002
[27] Prikry, K., On images of the Lebesgue measure, I, II and III (1977), Unpublished manuscripts
[28] Rogers, C. A.; Jayne, J. E., \(K\)-analytic sets, (Analytic Sets (1980), Academic Press: Academic Press New York), 1-181 · Zbl 0524.54028
[29] Sazonov, V. V., On perfect measures, Amer. Math. Soc. Transl., 48, 229-254 (1965) · Zbl 0152.04301
[30] Schwartz, L., Radon measures on arbitrary topological spaces and cylindrical measures (1973), Oxford Univ. Press: Oxford Univ. Press London · Zbl 0298.28001
[31] Solovay, R. M., Real-valued measurable cardinals, (Axiomatic Set Theory, 13 (1971), Amer. Math. Soc: Amer. Math. Soc Providence, RI), 397-428, Part I · Zbl 0222.02078
[32] Ulam, S., Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math., 16, 140-150 (1930) · JFM 56.0920.04
[33] Varadarajan, V. S., Measures on topological spaces, Amer. Math. Soc. Transl., 48, 161-228 (1965) · Zbl 0152.04202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.