×

Actions of compact Abelian groups on semifinite injective factors. (English) Zbl 0588.46042

The paper presents an important step in the classification of group actions on von Neumann algebras. The main theorem gives a necessary and sufficient condition for two actions of a compact Abelian group on semifinite injective factors to be conjugate. In these conditions certain invariants are exploited which remind and develop Connes’ invariants for actions of \({\mathbb{Z}}\) on the hyperfinite \(II_ 1\) factor. The classification obtained is far from being smooth. One of the ”parameters” is a nonsingular ergodic action of a countable discrete Abelian group (the dual one) defined up to conjugacy. Another invariant is of cohomological character and little is known about the range of its possible values in the general situation, the picture being ”roughly the same as it is in the classification of injective type \(III_ 0\) factors”, and the main result ”should be thought of as a structure theorem rather than a classification in the sense of enumeration of all possible actions”. The classification is shown to be more simple in some particular cases.
In the subsequent paper: [C. Sutherland and M. Takesaki, Publ. Res. Inst. Math. Sci. Kyoto Univ., 21, 1087-1120 (1985)] the case of discrete amenable groups is considered.
Reviewer: A.Lodkin

MSC:

46L55 Noncommutative dynamical systems
46L35 Classifications of \(C^*\)-algebras
Full Text: DOI

References:

[1] Blattner, R., Automorphic group representations.Pacific J. Math., 8 (1958), 665–677. · Zbl 0087.32001
[2] Connes, A., Une classification des facteurs de type III.Ann. Sci. École Norm. Sup., 6 (1973), 133–252. · Zbl 0274.46050
[3] – Almost periodic states and factors of type III1.J. Functional Analysis, 186 (1974), 415–445. · Zbl 0302.46050 · doi:10.1016/0022-1236(74)90059-7
[4] – Outer conjugacy classes of automorphisms of factors.Ann. École Norm. Sup., 8 (1975), 383–419. · Zbl 0342.46052
[5] – Classification of injective factors, cases II1, II III{\(\lambda\)}, {\(\lambda\)}.Ann. of Math., 104 (1976), 73–115. · Zbl 0343.46042 · doi:10.2307/1971057
[6] – On the classification of von Neumann algebras and their automorphisms.Symposia Math., 20 (1976), 435–478.
[7] – Periodic automorphisms of the hyperfinite factor of type II1.Acta Sci. Math., 39 (1977), 39–66. · Zbl 0382.46027
[8] – Sur la théorie noncommutative de l’intégration.Lecture Notes in Math., Springer-Verlag, 725 (1979), 19–143.
[9] Connes, A., Feldman, J. &Weiss, B., Amenable equivalence relations are hyperfinite.J. Ergodic Theory and Dynamics, 1 (1981), 431–450. · Zbl 0491.28018
[10] Connes, A. &Takesaki, M., The flow of weights on factors of type III.Tôhoku Math., J., 29 (1977), 473–575; Errata. · Zbl 0408.46047 · doi:10.2748/tmj/1178240493
[11] Dye, H., On groups of measure preserving transformations, I.Amer. J. Math., 81 (1959), 119–159; II,ibid. Amer. J. Math., 85 (1963), 551–576. · Zbl 0087.11501 · doi:10.2307/2372852
[12] Feldman, J. &Moore, C. C., Ergodic equivalence relations, cohomology, and von Neumann algebras, I.Trans Amer. Math. Soc., 234 (1977), 289–324; II,ibid. Trans. Amer. Math. Soc., 234 (1977), 325–359. · Zbl 0369.22009 · doi:10.1090/S0002-9947-1977-0578656-4
[13] Huebschmann, J., Dissertation, E.T.H. 5999, Zürich, 1977.
[14] Jones, V., Actions of finite groups on the hyperfinite type II1 factor.Mem. Amer. Math. Soc., 237 (1980). · Zbl 0454.46045
[15] – An invariant for group actions, algèbres d’opérateurs.Lecture Notes in Math., Springer-Verlag, 725 (1979), 237–253.
[16] Jones, V. Prime actions of compact abelian groups on the hyperfinite II1 factor. To appear.
[17] Katayama, Y., Non-existence of a normal conditional expectation in a continuous crossed product.Kodai Math. J., 4 (1981), 345–352. · Zbl 0477.46053 · doi:10.2996/kmj/1138036420
[18] Feldman, J. &Lind, D., Hyperfiniteness and the Halmos-Rohlin theorem for nonsingular abelian actions.Proc. Amer. Math. Soc., 55 (1976), 339–344. · Zbl 0302.46047 · doi:10.1090/S0002-9939-1976-0409764-0
[19] Krieger, W., On ergodic flows and the isomorphism of factors.Math. Ann., 223 (1976), 19–70. · Zbl 0332.46045 · doi:10.1007/BF01360278
[20] Mackey, G. W., Ergodic theory and virtual groups.Math. Ann., 166 (1966), 187–207. · Zbl 0178.38802 · doi:10.1007/BF01361167
[21] McDuff, D., Central sequences and the hyperfinite factor.Proc. London Math. Soc., 21 (1970), 443–461. · Zbl 0204.14902 · doi:10.1112/plms/s3-21.3.443
[22] Nakamura, M. &Takeda, Z., On certain examples of the crossed product of finite factors, I.Proc. Japan Acad., 34 (1958), 495–499; II.ibid.Proc. Japan Acad., 500–502. · Zbl 0085.10001 · doi:10.3792/pja/1195524560
[23] Ocneanu, A., Actions of discrete amenable groups on factors. To appear. · Zbl 0608.46035
[24] Olesen, D., Pedersen, G. K. &Takesaki, M., Ergodic actions of compact abelian groups.J. Operator theory, 3 (1980), 237–269. · Zbl 0456.46053
[25] Schmidt, K.,Lectures on cocycles for ergodic group actions. Univ. Warwick Lecture Notes Series.
[26] Sutherland, C.,Notes on orbit equivalence: Krieger’s theorem. Lecture Notes Series No. 23, Oslo (1976).
[27] Suzuki, N., A linear representation of a countable infinite group.Proc. Japan Acad., 34 (1958), 575–579. · Zbl 0097.10904 · doi:10.3792/pja/1195524522
[28] Takesaki, M., Duality for crossed products and the structure of von Neumann algebras of type III.Acta Math. 131 (1973), 249–310. · Zbl 0268.46058 · doi:10.1007/BF02392041
[29] Habegger, N., Jones, V., Pino-Ortiz, O., Ratcliffe, J., Relative cohomology of groups.Comm. Math. Helv., 59 (1994), 149–164. · Zbl 0544.20047 · doi:10.1007/BF02566342
[30] Ornstein, D., On the root problem in ergodic theory.Proc. Sixth Berkeley Symposium on Math. Statistic and Prob., Vol. 3 1972). · Zbl 0262.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.