×

Methods for combination of finite element and singular integral equation methods. (English) Zbl 0587.73118

The combination of the finite element and singular integral equation methods is admitted to facilitate the solution of the problem of a cracked body with complex geometry. Two different methods of combination have already been presented. In this paper a description of all possible methods of combination is presented and a qualitative comparison of them is given.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74S05 Finite element methods applied to problems in solid mechanics
65R20 Numerical methods for integral equations
Full Text: DOI

References:

[1] Neal, B. K., Finite element crack tip modelling when evaluating the \(J\)-integrals, Internat. J. Fracture, 11, R177-R178 (1975)
[2] Stern, M.; Becker, E. B.; Dunham, R. S., A contour integral computation of mixed-mode stress intensity factors, Internat. J. Fracture, 12, 359-368 (1976)
[3] Dixon, J. R.; Stannigan, J. S., Determination of energy release rates and stress-intensity factors by the finite element method, J. Structures Anal., 7, 125-131 (1972)
[4] Helen, T. K., On the method of virtual crack extensions, Internat. J. Numer. Meths. Engrg., 9, 187-208 (1975) · Zbl 0293.73049
[5] Ishikawa, H., A finite element analysis of stress intensity factors for combined tensil and shear loading by only a virtual crack extension, Internat. J. Fracture, 16, R243-R245 (1980)
[6] Gallagher, R. H., A review of finite elements techniques in fracture mechanics, (Luxmoore, A. R.; Owen, D. R.J., Numerical Methods in Fracture Mechanics (1978), University of Wales: University of Wales Swansea, U.K), 1-25 · Zbl 0424.73073
[7] Yamada, Y.; Ezawa, Y.; Nishiguchi, I.; Okabe, M., Reconsiderations on singularity or crack tip elements, Internat. J. Numer. Meths. Engrg., 14, 1525-1544 (1979) · Zbl 0411.73066
[8] Hughes, T. J.R.; Akin, J. E., Techniques for developing “special” finite element shape functions with particular reference to singularities, Internat. J. Mech. Engrg., 15, 733-751 (1980) · Zbl 0428.73074
[9] Okabe, M.; Kikuchi, N., Some general Lagrange interpolations over simplex finite elements with reference to derivative singularities, Comput. Meths. Appl. Mech. Engrg., 28, 1-25 (1981) · Zbl 0466.73088
[10] Okabe, M., Fundamental theory of the semi-radial singularity mapping with applications to fracture mechanics, Comput. Meths. Appl. Mech. Engrg., 26, 53-73 (1981) · Zbl 0463.73091
[11] Okabe, M., Quadrilateral element with semi-radial singularity mapping, Internat. J. Numer. Meths. Engrg., 17, 1045-1067 (1981) · Zbl 0456.73056
[12] Ying, L., Some “special” interpolation formulae for triangular and quadrilateral elements, Internat. J. Numer. Meths. Engrg., 18, 959-966 (1982) · Zbl 0485.73061
[13] Mirtza, F. A.; Olson, M. D., Energy convergence and evaluation of stress intensity factor \(k_1\) for stress singular problems by mixed element method, Internat. J. Fracture, 14, 555-573 (1978)
[14] Kelly, D. E.; Gago, J. R.; Zienkiewicz, O. C.; Babuška, I., A posteriori error analysis and adaptive processes in the finite element method, Part I—Error analysis, Part II—Adaptive mesh refinement, Internat. J. Numer. Engrg., 19, 1593-1656 (1983) · Zbl 0534.65069
[15] Szabó, B. A.; Metha, A. K., Convergent finite element approximations in fracture mechanics, Internat. J. Numer. Meths. Engrg., 12, 551-560 (1978) · Zbl 0369.73097
[16] Peano, A. G.; Szabó, B. A.; Metha, A. K., Self-adaptive finite elements in fracture mechanics, Comput. Meths. Appl. Mech. Engrg., 16, 69-80 (1978) · Zbl 0384.73067
[17] Tsamasphyros, G.; Giannakopoulos, I. E., The mapped elements for the solution of cracked bodies, Comput. Meths. Appl. Mech. Engrg., 49, 331-342 (1985) · Zbl 0546.73078
[18] G. Tsamasphyros, Singular element construction using mapping technique, Internat. J. Numer. Meths.; G. Tsamasphyros, Singular element construction using mapping technique, Internat. J. Numer. Meths. · Zbl 0613.73101
[19] Annigeri, B. S.; Cleary, M. P., Surface integral finite element hybrid (SIFEH) method for fracture mechanics, Internat. J. Numer. Meths. Engrg., 20, 869-885 (1984) · Zbl 0528.73074
[20] Wium, D. J.W.; Bugukozturk, O.; Li, V. C., Hybrid model for discrete cracks in concrete, ASCE J. Engrg. Mech., 110, 1211-1229 (1984)
[21] Tsamasphyros, G.; Theotokoglou, E. E., Direct combination of the finite element and singular integral equation methods for the solution of problems of cracks in finite sheets, (Proceedings First International Congress on Applied Mechanics. Proceedings First International Congress on Applied Mechanics, Athens (1986)) · Zbl 0946.74080
[22] Tsamsphyros, G.; Theotokoglou, E. E., S.I.F. evaluation by using finite-element method and Schwarz’s alternating method, (Proceedings of First USA-GREECE Symposium on Mixed Mode Crack Propagation. Proceedings of First USA-GREECE Symposium on Mixed Mode Crack Propagation, Athens (1980)), 235-244
[23] Theocaris, P. S.; Tsamasphyros, G.; Theotokoglou, E. E., A combined integral-equation and finite-element method for the evaluation of stress intensity factors, Comput. Meths. Appl. Mech. Engrg., 31, 117-127 (1982) · Zbl 0478.73064
[24] Theocaris, P. S.; Theotokoglov, E. E.; Tsamasphyros, G., A relaxation technique for evaluating stress intensity factors by the finite-element method, Internat. J. Numer. Meths. Engrg., 12, 279-288 (1978)
[25] Theocaris, P. S.; Tsamasphyros, G.; Theotokoglou, E. E., An alternating coupling of finite elements and singular integral equations for the solution of branched cracks in finite sheets, Engrg. Fracture Mech., 20, 583-589 (1984)
[26] Theocaris, P. S.; Tsamasphyros, G.; Theotokoglou, E. E., A combination of the finite element and singular-integral equation methods for the solution of the generally cracked body, Internat. J. Numer. Meths. Engrg., 20, 2065-2075 (1984) · Zbl 0547.73053
[27] Sih, G. C., Mechanics of Fracture, Method of Analysis and Solutions of Crack Problems, Vol. 1 (1973), Noordhoff, Leyden, The Netherlands · Zbl 0245.00013
[28] Theocaris, P. S.; Tsamasphyros, G., On the solution of boundary-value problems in plane elasticity for multiply-connected regions, Lett. Appl. Engrg. Sci., 3, 167-176 (1975)
[29] Theocaris, P. S.; Tsamasphyros, G., Résolution du deuxième problème aux limites, Bull. Acad. Polon. Sci. Sér. Sci. Tech., 16, 487-494 (1976)
[30] Theocaris, P. S.; Tsamasphyros, G., Sur une méthode de résolution du deuxième problème aux limites, Arch. Mech., 30, 3-15 (1978) · Zbl 0435.73015
[31] Tsamasphyros, G.; Theocaris, P. S., Equivalence and convergence of direct and indirect methods for the numerical solutions of singular integral equations, Comput., 27, 71-80 (1981) · Zbl 0464.65091
[32] Argyris, J. H.; William, K. J., Some considerations for the evaluation of finite element models, Nucl. Engrg. Design, 28, 76-96 (1974)
[33] Galagher, R., Finite Element Analysis Fundamentals (1975), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[34] Tsamasphyros, G.; Theocaris, P. S., Cubature formulas for the evaluation of surface singular integrals, BIT, 19, 368-377 (1979) · Zbl 0451.65011
[35] Courant, R., Calculus of variation and supplementary notes and exercises (1982), Courant Institute of Mathematical Sciences, New York University: Courant Institute of Mathematical Sciences, New York University New York
[36] Utku, M.; Carey, G. F., Boundary penalty techniques, Comput. Meths. Appl. Mech. Engrg., 30, 103-118 (1982) · Zbl 0478.65066
[37] Yamamoto, Y., Finite element approach with the aid of analytical solutions, (Recent Advances on Matrix Method of Structural Analysis and Design (1971), University of Alabama Press: University of Alabama Press Tuscaloosa, AL), 85-103 · Zbl 0241.73099
[38] Yamamoto, Y.; Tokuda, N., Determination of stress intensity factors in cracked plates by the finite element method, Internat. J. Numer. Meths. Engrg., 6, 427-439 (1973) · Zbl 0253.73055
[39] Strang, G.; Fix, G., An Analysis of the Finite Element Method (1973), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0278.65116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.