×

Some parabolic systems of rank 2 related to sporadic groups. (English) Zbl 0587.20011

Let G be a group, p a fixed prime, and B a finite p-closed subgroup of G. A set \(\Omega =\{P_ 1,...,P_ n\}\) is called a parabolic system of rank n for G if the following holds for \(1\leq i\leq n:\) (1) \(B=N_{P_ i}(O_ p(B))\), (2) B is contained in a unique subgroup of \(P_ i\), (3) \(O_ p(P_ i)\neq 1\), (4) \(G=<\Omega >\) but \(G\neq <\Omega '>\) for \(\Omega\) ’\(\subsetneqq \Omega.\)
In the case of a finite Chevalley group G of characteristic p \(\Omega\) is the set of minimal parabolic subgroups containing a Borel subgroup B. The examples of parabolic systems for \(p=2\) in sporadic finite simple groups [see M. Ronan and G. Stroth, Eur. J. Comb. (to appear)] suggest to study parabolic systems satisfying
(A) \(\Omega =\{M_ 1,M_ 2\}\), (i) \(M_ 1/O_ 2(M_ 1)\simeq \Sigma_ 5\), \(M_ 2/O_ 2(M_ 2)\simeq \Sigma_ 3\), (ii) If \(N\subseteq M_ 1\cap M_ 2\), \(N\trianglelefteq G\), then \(N=1\), (iii) \(C_{M_ i}(O_ 2(M_ i))\subseteq O_ 2(M_ i)\), \(i=1,2.\)
A parabolic system \(\{M_ 1,M_ 2\}\) is of type X if the finite group X contains a parabolic system \(\{\) \(\tilde M_ 1,\tilde M_ 2\}\) with \(\tilde M_ i\simeq M_ i\). Under hypothesis (A) it is shown, that the parabolic system is of type \(Aut(U_ 4(2))\), \(M_{22}\), \(Aut(M_{22})\), HS, Aut(HS), Ly, or Ru. The proof of this result depends on a graph theoretic approach originally introduced by D. Goldschmidt. More material related to these concepts can be found in [A. Delgado, D. Goldschmidt, B. Stellmacher, Groups and graphs (1985; Zbl 0566.20013)].
Reviewer: U.Dempwolff

MSC:

20D08 Simple groups: sporadic groups
20F65 Geometric group theory
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)

Citations:

Zbl 0566.20013
Full Text: DOI

References:

[1] Baumann, B., Über endliche Gruppen mit einer zu \(L_2 (2^n)\) isomorphen Faktorgruppe, (Proc. Amer. Math. Soc., 74 (1979)), 215-222 · Zbl 0409.20009
[2] Bierbrauer, J., A 2-local characterization of the Rudvalis simple group, J. Algebra, 58, 563-571 (1979) · Zbl 0409.20012
[3] Delgado, A. L.; Stellmacher, B., Weak (B, N)-pairs of rank 2, (Groups and Graphs (1985), Birkhäuser Verlag)
[4] Goldschmidt, D., Automorphisms of trivalent graphs, Ann. of Math., 111, 377-406 (1980) · Zbl 0475.05043
[5] Huppert, B., Endliche Gruppen I (1967), Springer-Verlag: Springer-Verlag New York · Zbl 0217.07201
[6] M. A. Ronan and G. StrothEuropean J. Combin.; M. A. Ronan and G. StrothEuropean J. Combin. · Zbl 0574.20012
[7] Serre, J.-P, Trees (1980), Springer-Verlag: Springer-Verlag New York · Zbl 0548.20018
[8] B. StellmacherIllinois J. Math.; B. StellmacherIllinois J. Math. · Zbl 0556.20015
[9] Timmesfeld, T. G., Tits geometries and parabolic systems in finitely generated groups, II, Math. Z., 184, 449-487 (1983) · Zbl 0518.20036
[10] Tits, J., A local approach to buildings, (The Geometric Vein (1981), Springer-Verlag: Springer-Verlag New York), 519-547 · Zbl 0496.51001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.