×

A boundary element method analysis of temperature fields and stresses during solidification. (English) Zbl 0581.73048

The subject of this paper is the analysis of transient temperature fields and associated stress fields in solidifying bodies. A mathematical model for such problems, together with a solution procedure using the boundary integral equation method, are presented here. Numerical and some experimental results, for the one-dimensional solidification of an aluminum bar, are presented and discussed.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74C20 Large-strain, rate-dependent theories of plasticity
74S30 Other numerical methods in solid mechanics (MSC2010)
74A15 Thermodynamics in solid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
65R20 Numerical methods for integral equations
Full Text: DOI

References:

[1] Richmond, O., Tien, R. H.: Theory of thermal stress and air gap formation during the early stages of solidification in a rectangular mold. Journal of the Mechanics and Physics of Solids19, 273-284 (1971). · doi:10.1016/0022-5096(71)90013-5
[2] Tien, R. H., Richmond, O.: Theory of maximum tensile stresses in the solidifying shell of a constrained rectangular casting. ASME Journal of Applied Mechanics49, 481-486 (1982). · doi:10.1115/1.3162485
[3] Penny, R. K., Marriott, D. L.: Design for creep. Maidenhead, Berkshire, U.K.: McGraw Hill 1971.
[4] Anand, L.: Constitutive equations for the rate-dependent deformation of metals at elevated temperatures. ASME Journal of Engineering Materials and Technology104, 12-17 (1982). · doi:10.1115/1.3225028
[5] Hart, E. W.: Constitutive relations for the non-elastic deformation of metals. ASME Journal of Engineering Materials and Technology98, 193-202 (1976). · doi:10.1115/1.3443368
[6] Carslaw, H. S., Jager, J. C.: Conduction of heat in solids, 2nd ed. Oxford University Press 1959.
[7] Banerjee, P. K., Shaw, R. P.: Boundary element formulation for melting and solidification problems. Developments in boundary element methods ? 2 (Banerjee, P. K., Shaw, R. P., eds.), 1-18. Barking, Essex, U.K. 1982. · Zbl 0479.76017
[8] Chuang, Y. K., Szekely, J.: On the use of Green’s function for solving melting and solidification problems. International Journal of Heat and Mass Transfer14 1285-1294 (1971). · doi:10.1016/0017-9310(71)90178-5
[9] Chuang, Y. K., Szekely, J.: The use of Green’s functions for solving melting and solidification problems in cylindrical coordinate systems. International Journal of Heat and Mass Transfer15, 1171-1174 (1972). · doi:10.1016/0017-9310(72)90247-5
[10] O’Neill, K.: Boundary integral equation solution for moving boundary phase change problems. International Journal for Numerical Methods in Engineering19, 1825-1850 (1983). · Zbl 0526.65086 · doi:10.1002/nme.1620191208
[11] Mukherjee, S.: Boundary element methods in creep and fracture, Barking, Essex, U.K.: Elsevier Applied Science Publishers 1982. · Zbl 0534.73070
[12] Banerjee, P. K., Butterfield, R.: Boundary element methods in engineering science. Maidenhead, Berkshire, U.K.: McGraw Hill 1981. · Zbl 0499.73070
[13] Brebbia, C. A., Telles, J. C. F., Wrobel, L. C.: Boundary element techniques-Theory and applications in engineering. Berlin, Heidelberg; Springer 1984. · Zbl 0556.73086
[14] Van Horn, K. R. (ed.): Aluminum-Vol. 1 Properties, physical metallurgy and phase diagrams. Metals Park, Ohio: American Society of Metals 1967.
[15] Touloukian, Y. S., Buyco, E. H.: Thermophysical properties of matter, Vol. 4. New York: IFI/Plenum 1970.
[16] Touloukian, Y. S., Kirby, R. K., Taylor, R. E., Desai, P. D.: Thermophysical properties of matter, Vol. 12. New York: IFI/Plenum 1975.
[17] Zaiman, S., Takeuti, Y., Nyuko, H.: Measurement of dynamic modulii of elasticity of aluminum wrought alloys by ultrasonic method. 1st Report. Journal of Japanese Institute of Light Metals21, 803-808 (1971).
[18] Newko, H., Zaima, S., Takeuti, Y., Tamaru, K.: Measurement of dynamic modulii of elasticity of aluminum wrought alloys by ultrasonic method. 2nd Report. Journal of Japanese Institute of Light Metals22, 710-715 (1972).
[19] Winter, E. F. M.: Alcoa Laboratories. Private Communication.
[20] Ghosh, S., Mukherjee, S.: Boundary element method analysis of thermoelastic deformation in nonhomogeneous media. International Journal of Solids and Structures20, 829-843 (1984). · Zbl 0556.73011 · doi:10.1016/0020-7683(84)90053-2
[21] Kumar, V., Mukherjee, S.: A boundary integral equation formulation for time-dependent inelastic deformation in metals. International Journal of Mechanical Sciences19, 713-724 (1977). · Zbl 0372.73036 · doi:10.1016/0020-7403(77)90057-1
[22] Richmond, O.: Models of stresses and deformations in solidifying bodies. Modelling of casting and welding processes. New York. American Society of Mechanical Engineers, pp. 215-222 (1982).
[23] Mukherjee, S., Chandra, A.: Boundary element formulations for large strain-large deformation problems of plasticity and viscoplasticity. Developments in boundary element methods ? 3 (Banerjee, P. K., Mukherjee, S., eds.), 27-58. Barking, Essex, U.K.: 1984. · Zbl 0548.73065
[24] Gradshteyn, I. S., Ryzhik, I. W.: Tables of integrals, series and products. New York: Academic Press 1965. · Zbl 0918.65002
[25] Sheppard, T., Wright, D. S: Determination of flow stress: Part 1. Constitutive equation for aluminum alloys at elevated temperatures. Metals Technology 215-223, (1979).
[26] Granger, D. A.: Alcoa Laboratories. Private Communication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.